Genomic Potential for Coral Survival of Climate Change



One of the most pressing questions in coral reef biology today is “Will reef-building corals survive climate change?” Critical to this question is the rate at which climate change is progressing and whether that rate will be matched or exceeded by the ability of corals to acclimatize and adapt in their upper stress tolerance limits. The emerging field of genomics (i.e., genome scale genetics) holds great promise for investigation of the raw material needed for coral acclimatization and adaptation to climate change: variation in the gene sequences and activity of the molecular response pathways enabling corals and Symbiodinium to maintain key biological functions under environmental stress. A growing number of studies of gene expression signatures and gene frequency distributions are finding a diverse array of potential targets both for acclimatization potential and adaptive natural selection in climate change resistance. Additionally, research is consistently finding greater acclimatization and adaptive potential than previously thought, which when incorporated into models of coral survival in the future significantly improves the short-term outlook for reef persistence. Much remains to be determined about the extent of relevant phenotypic diversity in coral thermal tolerance and resistance to ocean acidification as well as the relative contributions of the coral host, Symbiodinium, and associated microbes to increased stress resistance. However, application of these new technologies to the question of coral climate change survival provides new evidence that evolutionary accumulation of adaptive diversity and phenotypic plasticity may give corals increased potential for persistence in the Anthropocene.


Adaptation Acclimatization Acidification Climate Selection 


  1. Abrego D, Ulstrup KE, Willis BL, van Oppen MJH (2008) Species-specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress. Proc R Soc Lond Ser B Biol Sci 275:2273–2282CrossRefGoogle Scholar
  2. Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1:95–111PubMedCentralCrossRefPubMedGoogle Scholar
  3. Anthony KR, Hoegh-Guldberg O (2003) Kinetics of photoacclimation in corals. Oecologia 134:23–31CrossRefPubMedGoogle Scholar
  4. Barrett RD, Schluter D (2008) Adaptation from standing genetic variation. Trends Ecol Evol 23:38–44CrossRefPubMedGoogle Scholar
  5. Barrett RD, Paccard A, Healy TM, Bergek S, Schulte PM, Schluter D, Rogers SM (2011) Rapid evolution of cold tolerance in stickleback. Proc R Soc B 278:233–238PubMedCentralCrossRefPubMedGoogle Scholar
  6. Barshis DJ (unpublished data)Google Scholar
  7. Barshis D, Stillman JH, Gates RD, Toonen RJ, Smith LW, Birkeland C (2010) Protein expression and genetic structure of the coral Porites lobata in an environmentally extreme Samoan back reef: does host genotype limit phenotypic plasticity? Mol Ecol 19:1705–1720CrossRefPubMedGoogle Scholar
  8. Barshis D, Ladner JT, Oliver TA, Seneca FO, Traylor-Knowles N, Palumbi SR (2013) Genomic basis for coral resilience to climate change. Proc Natl Acad Sci U S A 110:1387–1392PubMedCentralCrossRefPubMedGoogle Scholar
  9. Barshis DJ, Ladner JT, Oliver TA, Palumbi SR (2014) Lineage-specific transcriptional profiles of Symbiodinium spp. unaltered by heat stress in a coral host. Mol Biol Evol 31:1343–1352CrossRefPubMedGoogle Scholar
  10. Baums IB, Devlin-Durante MK, Polato NR, Xu D, Giri S, Altman NS, Ruiz D, Parkinson JE, Boulay JN (2013) Genotypic variation influences reproductive success and thermal stress tolerance in the reef building coral, Acropora palmata. Coral Reefs 32:703–717CrossRefGoogle Scholar
  11. Bay RA, Palumbi SR (2014). Multi-locus adaptation associated with heat resistance in reef-building corals. Curr Biol 24(24):2952–2956Google Scholar
  12. Bayer T, Aranda M, Sunagawa S, Yum L, DeSalvo M, Lindquist E, Coffroth MA, Voolstra CR, Medina M (2012) Symbiodinium transcriptomes: genome insights into the dinoflagellate symbionts of reef-building corals. PLoS ONE 7:e35269PubMedCentralCrossRefPubMedGoogle Scholar
  13. Bell G (2013) Evolutionary rescue and the limits of adaptation. Philos Trans R Soc Lond B Biol Sci 368:20120080PubMedCentralCrossRefPubMedGoogle Scholar
  14. Bellantuono AJ, Granados-Cifuentes C, Miller DJ, Hoegh-Guldberg O, Rodriguez-Lanetty M (2012a) Coral thermal tolerance: tuning gene expression to resist thermal stress. PLoS ONE 7:e50685PubMedCentralCrossRefPubMedGoogle Scholar
  15. Bellantuono AJ, Hoegh-Guldberg O, Rodriguez-Lanetty M (2012b) Resistance to thermal stress in corals without changes in symbiont composition. Proc Roy Soc B Biol Sci 279:1100–1107CrossRefGoogle Scholar
  16. Berkelmans R, van Oppen MJH (2006) The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc R Soc B 273:2305–2312PubMedCentralCrossRefPubMedGoogle Scholar
  17. Brown BE, Cossins AR (2011). The potential for temperature acclimatisation of reef corals in the face of climate change. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Berlin/Heidelberg/New York, pp 421–433Google Scholar
  18. Buddemeier RW, Fautin DG (1993) Coral bleaching as an adaptive mechanism. A testable hypothesis. Bioscience 43:320–325CrossRefGoogle Scholar
  19. Calosi P, Bilton DT, Spicer JI (2008) Thermal tolerance, acclimatory capacity and vulnerability to global climate change. Biol Lett 4:99–102PubMedCentralCrossRefPubMedGoogle Scholar
  20. Cantin N, van Oppen MJH, Willis BL, Mieog JC, Negri A (2009) Juvenile corals can acquire more carbon from high-performance algal symbionts. Coral Reefs 28:405–414CrossRefGoogle Scholar
  21. Carpenter KE, Abrar M, Aeby G, Aronson RB, Banks S, Bruckner A, Chiriboga A, Cortes J, Delbeek JC, DeVantier L, Edgar GJ, Edwards AJ, Fenner D, Guzman HM, Hoeksema BW, Hodgson G, Johan O, Licuanan WY, Livingstone SR, Lovell ER, Moore JA, Obura DO, Ochavillo D, Polidoro BA, Precht WF, Quibilan MC, Reboton C, Richards ZT, Rogers AD, Sanciangco J, Sheppard A, Sheppard C, Smith J, Stuart S, Turak E, Veron JEN, Wallace C, Weil E, Wood E (2008) One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321:560–563CrossRefPubMedGoogle Scholar
  22. Carroll SP, Hendry AP, Reznick DN, Fox CW (2007) Evolution on ecological time-scales. Funct Ecol 21:387–393CrossRefGoogle Scholar
  23. Clausen CD, Roth AA (1975) Effect of temperature and temperature adaptation on calcification rate in the hermatypic coral Pocillopora damicornis. Mar Biol 33:93–100CrossRefGoogle Scholar
  24. Coles S (1997) Reef corals occurring in a highly fluctuating temperature environment at Fahal Island, Gulf of Oman (Indian Ocean). Coral Reefs 16:269–272CrossRefGoogle Scholar
  25. Coles SL, Brown BE (2003) Coral bleaching – capacity for acclimatization and adaptation, vol 46, Advances in Marine Biology. Academic, London, pp 183–223Google Scholar
  26. Coles SL, Riegl BM (2013) Thermal tolerances of reef corals in the Gulf: a review of the potential for increasing coral survival and adaptation to climate change through assisted translocation. Mar Pollut Bull 72:323–332CrossRefPubMedGoogle Scholar
  27. Coles SL, Jokiel PL, Lewis CR (1976) Thermal tolerance in tropical versus subtropical Pacific reef corals. Pac Sci 30:159–166Google Scholar
  28. Craig P, Birkeland C, Belliveau S (2001) High temperatures tolerated by a diverse assemblage of shallow-water corals in American Samoa. Coral Reefs 20:185–189CrossRefGoogle Scholar
  29. Crook ED, Cohen AL, Rebolledo-Vieyra M, Hernandez L, Paytan A (2013) Reduced calcification and lack of acclimatization by coral colonies growing in areas of persistent natural acidification. Proc Natl Acad Sci U S A 110:11044–11049PubMedCentralCrossRefPubMedGoogle Scholar
  30. Crozier LG, Hutchings JA (2014) Plastic and evolutionary responses to climate change in fish. Evol Appl 7:68–87PubMedCentralCrossRefPubMedGoogle Scholar
  31. DeWitt TJ, Sih A, Wilson DS (1998) Costs and limits of phenotypic plasticity. Trends Ecol Evol 13:77–81CrossRefPubMedGoogle Scholar
  32. Doney SC, Ruckelshaus M, Duffy JE, Barry JP, Chan F, English CA, Galindo HM, Grebmeier JM, Hollowed AB, Knowlton N, Polovina J, Rabalais NN, Sydeman WJ, Talley LD (2011) Climate change impacts on marine ecosystems. Ann Rev Mar Sci 4:11–37CrossRefGoogle Scholar
  33. Donner SD, Skirving WJ, Little CM, Oppenheimer M, Hoegh-Guldberg OVE (2005) Global assessment of coral bleaching and required rates of adaptation under climate change. Glob Chang Biol 11:2251–2265CrossRefGoogle Scholar
  34. Dustan P (1982) Depth-dependent photoadaption by zooxanthellae of reef coral Montastrea annularis. Mar Biol 68:253–264CrossRefGoogle Scholar
  35. Edmunds PJ (2014) Is acclimation beneficial to scleractinian corals, Porites spp.? Mar Biol 161:1531–1542CrossRefGoogle Scholar
  36. Edmunds PJ, Carpenter RC, Comeau S (2013) Understanding the threats of ocean acidification to coral reefs. Oceanography 26:149–152CrossRefGoogle Scholar
  37. Fabricius KE, Mieog JC, Colin PL, Idip D, van Oppen MJH (2004) Identity and diversity of coral endosymbionts (zooxanthellae) from three Palauan reefs with contrasting bleaching, temperature and shading histories. Mol Ecol 13:2445–2458CrossRefPubMedGoogle Scholar
  38. Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Okazaki R, Muehllehner N, Glas MS, Lough JM (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Chang 1:165–169CrossRefGoogle Scholar
  39. Fine M, Gildor H, Genin A (2013) A coral reef refuge in the Red Sea. Glob Chang Biol 19:3640–3647CrossRefPubMedGoogle Scholar
  40. Garant D, Forde SE, Hendry AP (2007) The multifarious effects of dispersal and gene flow on contemporary adaptation. Funct Ecol 21:434–443CrossRefGoogle Scholar
  41. Guest JR, Baird AH, Maynard JA, Muttaqin E, Edwards AJ, Campbell SJ, Yewdall K, Affendi YA, Chou LM (2012) Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. PLoS ONE 7:e33353PubMedCentralCrossRefPubMedGoogle Scholar
  42. Hagedorn M, van Oppen MJ, Carter V, Henley M, Abrego D, Puill-Stephan E, Negri A, Heyward A, MacFarlane D, Spindler R (2012) First frozen repository for the great barrier reef coral created. Cryobiology 65:157–158CrossRefPubMedGoogle Scholar
  43. Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866CrossRefGoogle Scholar
  44. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742CrossRefPubMedGoogle Scholar
  45. Hoegh-Guldberg O, Hughes L, McIntyre S, Lindenmayer DB, Parmesan C, Possingham HP, Thomas CD (2008) Assisted colonization and rapid climate change. Science 321:345–346CrossRefPubMedGoogle Scholar
  46. Hoffmann AA, Sgro CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485CrossRefPubMedGoogle Scholar
  47. Holt RD (1990) The microevolutionary consequences of climate change. Trends Ecol Evol 5:311–315CrossRefPubMedGoogle Scholar
  48. Howells EJ, Beltran VH, Larsen NW, Bay LK, Willis BL, Van Oppen MJH (2012) Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat Clim Chang 2:116–120CrossRefGoogle Scholar
  49. Howells EJ, Berkelmans R, Van Oppen MJH, Willis BL, Bay LK (2013) Historical thermal regimes define limits to coral acclimatization. Ecology 94:1078–1088CrossRefPubMedGoogle Scholar
  50. Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nystrom M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933CrossRefPubMedGoogle Scholar
  51. Jarrold MD, Calosi P, Verberk WCEP, Rastrick SPS, Atfield A, Spicer JI (2013) Physiological plasticity preserves the metabolic relationship of the intertidal non-calcifying anthozoan-Symbiodinium symbiosis under ocean acidification. J Exp Mar Biol Ecol 449:200–206CrossRefGoogle Scholar
  52. Jokiel PL (2004) Temperature stress and coral bleaching. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, Heidelberg, pp 401–425CrossRefGoogle Scholar
  53. Jokiel PL, Coles SL (1990) Response of Hawaiian and other Indo-Pacific reef corals to elevated temperature. Coral Reefs 8:155–162CrossRefGoogle Scholar
  54. Jones AM, Berkelmans R, van Oppen MJH, Mieog JC, Sinclair W (2008) A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proc R Soc Lond Ser B Biol Sci 275:1359–1365CrossRefGoogle Scholar
  55. Kelly MW, Hofmann GE, Hoffmann A (2013) Adaptation and the physiology of ocean acidification. Funct Ecol 27:980–990CrossRefGoogle Scholar
  56. Kenkel CD, Goodbody-Gringley G, Caillaud D, Davies SW, Bartels E, Matz MV (2013a) Evidence for a host role in thermotolerance divergence between populations of the mustard hill coral (Porites astreoides) from different reef environments. Mol Ecol 22:4335–4348CrossRefPubMedGoogle Scholar
  57. Kenkel CD, Meyer E, Matz MV (2013b) Gene expression under chronic heat stress in populations of the mustard hill coral (Porites astreoides) from different thermal environments. Mol Ecol 22:4322–4334CrossRefPubMedGoogle Scholar
  58. Ladner JT, Barshis DJ, Palumbi SR (2012) Protein evolution in two co-occurring types of Symbiodinium: an exploration into the genetic basis of thermal tolerance in Symbiodinium clade D. BMC Evol Biol 12:217PubMedCentralCrossRefPubMedGoogle Scholar
  59. Leroi AM, Bennett AF, Lenski RE (1994) Temperature acclimation and competitive fitness: an experimental test of the beneficial acclimation assumption. Proc Natl Acad Sci U S A 91:1917–1921PubMedCentralCrossRefPubMedGoogle Scholar
  60. Logan CA, Dunne JP, Eakin CM, Donner SD (2014) Incorporating adaptive responses into future projections of coral bleaching. Glob Chang Biol 20:125–139CrossRefPubMedGoogle Scholar
  61. Lundgren P, Vera JC, Peplow L, Manel S, Van Oppen MJH (2013) Genotype – environment correlations in corals from the Great Barrier Reef. BMC Genet 14:9PubMedCentralCrossRefPubMedGoogle Scholar
  62. Mass T, Einbinder S, Brokovich E, Shashar N, Vago R, Erez J, Dubinsky Z (2007) Photoacclimation of Stylophora pistillata to light extremes: metabolism and calcification. Mar Ecol Prog Ser 334:93–102CrossRefGoogle Scholar
  63. Mayfield AB, Fan TY, Chen CS (2013). Physiological acclimation to elevated temperature in a reef-building coral from an upwelling environment. Coral Reefs 32:909–921CrossRefGoogle Scholar
  64. Maynard JA, Anthony KRN, Marshall PA, Masiri I (2008) Major bleaching events can lead to increased thermal tolerance in corals. Mar Biol 155:173–182CrossRefGoogle Scholar
  65. Meyer E, Davies S, Wang S, Willis BL, Abrego D, Juenger TE, Matz MV (2009) Genetic variation in responses to a settlement cue and elevated temperature in the reef-building coral Acropora millepora. Mar Ecol Prog Ser 392:81–92CrossRefGoogle Scholar
  66. Middlebrook R, Hoegh-Guldberg O, Leggat W (2008) The effect of thermal history on the susceptibility of reef-building corals to thermal stress. J Exp Biol 211:1050–1056CrossRefPubMedGoogle Scholar
  67. Moya A, Huisman L, Ball E, Hayward D, Grasso L, Chua C, Woo H, Gattuso J-P, Foret S, Miller DJ (2012) Whole transcriptome analysis of the coral Acropora millepora reveals complex responses to CO2-driven acidification during the initiation of calcification. Mol Ecol 21:2440–2454CrossRefPubMedGoogle Scholar
  68. Oliver TA, Palumbi SR (2009) Distributions of stress-resistant coral symbionts match environmental patterns at local but not regional scales. Mar Ecol Prog Ser 378:93–103CrossRefGoogle Scholar
  69. Oliver TA, Palumbi SR (2011a) Do fluctuating temperature environments elevate coral thermal tolerance? Coral Reefs 30:429–440CrossRefGoogle Scholar
  70. Oliver TA, Palumbi SR (2011b) Many corals host thermally resistant symbionts in high-temperature habitat. Coral Reefs 30:241–250CrossRefGoogle Scholar
  71. Palumbi SR, Barshis DJ, Traylor-Knowles N, Bay RA (2014) Mechanisms of reef coral resistance to future climate change. Science 344:895–898CrossRefPubMedGoogle Scholar
  72. Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333:418–422CrossRefPubMedGoogle Scholar
  73. Parkinson JE, Baums IB (2014) The extended phenotypes of marine symbioses: ecological and evolutionary consequences of intraspecific genetic diversity in coral-algal associations. Front Microbiol 5:445PubMedCentralPubMedGoogle Scholar
  74. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669CrossRefGoogle Scholar
  75. Prosser CL (1991) Environmental and metabolic animal physiology: comparative animal physiology. Wiley-Liss, New YorkGoogle Scholar
  76. Putnam HM, Stat M, Pochon X, Gates RD (2012) Endosymbiotic flexibility associates with environmental sensitivity in scleractinian corals. Proc Roy Soc B Biol Sci 279:4352–4361CrossRefGoogle Scholar
  77. Relya RA (2002) Costs of phenotypic plasticity. Am Nat 159:272–282CrossRefGoogle Scholar
  78. Riegl BM, Purkis SJ, Al-Cibahy AS, Abdel-Moati MA, Hoegh-Guldberg O (2011) Present limits to heat-adaptability in corals and population-level responses to climate extremes. PLoS ONE 6:e24802PubMedCentralCrossRefPubMedGoogle Scholar
  79. Riegl BM, Purkis SJ, Al-Cibahy AS, Al-Harthi S, Grandcourt E, Al-Sulaiti K, Baldwin J, Abdel-Moati AM (2012). Coral bleaching and mortality thresholds in the SE Gulf: highest in the world. In: Coral reefs of the Gulf: adaptation to climatic extremes. Springer, Dordrecht/New YorkGoogle Scholar
  80. Rodolfo-Metalpa R, Hoogenboom MO, Rottier C, Ramos-Espla A, Baker AC, Fine M, Ferrier-Pages C (2014) Thermally tolerant corals have limited capacity to acclimatize to future warming. Glob Chang Biol 20:3036–3049CrossRefPubMedGoogle Scholar
  81. Shamberger KEF, Cohen AL, Golbuu Y, McCorkle DC, Lentz SJ, Barkley HC (2014) Diverse coral communities in naturally acidified waters of a Western Pacific reef. Geophys Res Lett 41:499–504CrossRefGoogle Scholar
  82. Shinzato C, Shoguchi E, Kawashima T, Hamada M, Hisata K, Tanaka M, Fujie M, Fujiwara M, Koyanagi R, Ikuta T, Fujiyama A, Miller DJ, Satoh N (2011) Using the Acropora digitifera genome to understand coral responses to environmental change. Nature 476:320–323CrossRefPubMedGoogle Scholar
  83. Shoguchi E, Shinzato C, Kawashima T, Gyoja F, Mungpakdee S, Koyanagi R, Takeuchi T, Hisata K, Tanaka M, Fujiwara M, Hamada M, Seidi A, Fujie M, Usami T, Goto H, Yamasaki S, Arakaki N, Suzuki Y, Sugano S, Toyoda A, Kuroki Y, Fujiyama A, Medina M, Coffroth MA, Bhattacharya D, Satoh N (2013) Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure. Curr Biol 23:1399–1408CrossRefPubMedGoogle Scholar
  84. Smith L, Barshis D, Birkeland C (2007) Phenotypic plasticity for skeletal growth, density and calcification of Porites lobata in response to habitat type. Coral Reefs 26:559–567CrossRefGoogle Scholar
  85. Smith-Keune C, van Oppen M (2006) Genetic structure of a reef-building coral from thermally distinct environments on the Great Barrier Reef. Coral Reefs 25:493–502CrossRefGoogle Scholar
  86. Sotka EE, Thacker RW (2005) Do some corals like it hot? Trends Ecol Evol 20:59–62CrossRefPubMedGoogle Scholar
  87. Stat M, Gates RD (2011) Clade D Symbiodinium in scleractinian corals: a “Nugget” of hope, a selfish opportunist, an ominous sign, or all of the above? J Mar Biol 2011:1–9CrossRefGoogle Scholar
  88. Stat M, Carter D, Hoegh-Guldberg O (2006) The evolutionary history of Symbiodinium and scleractinian hosts–symbiosis, diversity, and the effect of climate change. Perspect Plant Ecol Evol Syst 8:23–43CrossRefGoogle Scholar
  89. Stat M, Loh WKW, Hoegh-Guldberg O, Carter DA (2008) Symbiont acquisition strategy drives host-symbiont associations in the southern Great Barrier Reef. Coral Reefs 27:763–772CrossRefGoogle Scholar
  90. Stillman JH (2003) Acclimation capacity underlies susceptibility to climate change. Science 301:65–65CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Biological SciencesOld Dominion UniversityNorfolkUSA

Personalised recommendations