Bioerosion and Coral Reef Growth: A Dynamic Balance



Bioerosion, involving the weakening and breakdown of calcareous coral reef structures, is due to the chemical and mechanical activities of numerous and diverse biotic agents. These range in size from minute, primarily intra-skeletal organisms, the microborers (e.g., algae, fungi, bacteria) to larger and often externally-visible macroboring invertebrate (e.g., sponges, polychaete worms, sipunculans, molluscs, crustaceans, echinoids) and fish (e.g., parrotfishes, acanthurids, pufferfishes) species. Constructive coral reef growth and destructive bioerosive processes are often in close balance. Dead corals are generally subject to higher rates of bioerosion than living corals, therefore, bioerosion and reef degradation can result from disturbances that cause coral mortality, such as sedimentation, eutrophication, pollution, temperature extremes, predation, and coral diseases. The effects of intensive coral reef bioerosion, involving El Niño-Southern Oscillation, Acanthaster predation, watershed alterations, and over-fishing, are re-examined after ~20 years (early 1990s–2010). We review the evidence showing that the biologically-mediated dissolution of calcium carbonate structures by endolithic algae and clionaid sponges will be accelerated with ocean acidification. The CaCO3 budget dynamics of Caribbean and eastern tropical Pacific reefs is reviewed and provides sobering case studies on the current state of coral reefs and their future in a high-CO2 world.


Rates Excavating Degradation Acidification Microborer 



Thanks are due Charles G Messing, Klaus Rützler, Paul L Jokiel and other referenced workers for the illustrations in this chapter. Michael J Risk and Charles Birkeland are acknowledged for helping with various literature leads, and Ann Campbell for her diligence in providing numerous published sources. Updating of the condition of the Coconut Island fringing reef was made possible by C Birkeland, PL Jokiel, John Stimson, and Nadiera Sukhraj. Joshua Levy kindly assisted in up-dating Fig. 4.12 and Michael P. C. Fuller with page proofing. Research reported by PW Glynn was supported by the Smithsonian Tropical Research Institute, National Science Foundation (Biological Oceanography Program), and the National Geographic Society. DP Manzello has received support from the National Oceanic and Atmospheric Administration via the Coral Reef Conservation and Ocean Acidification Programs.


  1. Agassiz L (1852) Coral reefs. In: Annual report of the Superintendent of the Coast Survey, showing the progress of that work during the year ending November, 1851, pp 153–154, 32d Congr, 1st Sess Senate Ex Doc No 3, R Armstrong, PrinterGoogle Scholar
  2. Ahr WM, Stanton RJ Jr (1973) The sedimentologic and paleoecologic significance of Lithotrya, a rock-boring barnacle. J Sediment Petrol 43:20–23Google Scholar
  3. Alvarez-Filip L, Dulvy NK, Gill JA, Côté IM, Watkinson AR (2009) Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. Proc R Soc Lond B Biol Sci 276:3019–3025CrossRefGoogle Scholar
  4. Aronson RB, Precht WF (2001) White-band disease and the changing face of Caribbean coral reefs. Hydrobiologia 460:25–38CrossRefGoogle Scholar
  5. Bak RPM (1990) Patterns of echinoid bioerosion in two Pacific coral reef lagoons. Mar Ecol Prog Ser 66:267–272CrossRefGoogle Scholar
  6. Bak RPM, Nieuwland G, Meesters EH (2009) Coral growth rates revisited after 31 years: what is causing lower extension rates in Acropora palmata? Bull Mar Sci 84:287–294Google Scholar
  7. Baker AC, Glynn PW, Riegl B (2008) Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuar Coast Shelf Sci 80:435–471CrossRefGoogle Scholar
  8. Banks S, Vera M, Chiriboga Á (2009) Characterizing the last remaining reefs: establishing reference points to assess long term change in Galápagos zooxanthellate coral communities. Galapagos Res 66:43–64Google Scholar
  9. Banner AH (1974) Kaneohe Bay, Hawaii: urban pollution and a coral reef ecosystem. Proc 2nd Int Coral Reef Symp, Brisbane 2:685–702Google Scholar
  10. Bardach JE (1959) The summer standing crop of fish on a shallow Bermuda reef. Limnol Oceanogr 4:77–85CrossRefGoogle Scholar
  11. Bardach JE (1961) Transport of calcareous fragments by reef fishes. Science 133:98–99PubMedCrossRefGoogle Scholar
  12. Barnes DJ (ed) (1983) Perspectives on coral reefs. Brian Clouston, Manuka, 277 pGoogle Scholar
  13. Bellwood DR (1995) Direct estimate of bioerosion by two parrotfish species, Chlorurus gibbus and C. sordidus, on the Great Barrier Reef, Australia. Mar Biol 121:419–429CrossRefGoogle Scholar
  14. Bellwood DR (1996) Production and reworking of sediment by parrotfishes (family Scaridae) on the Great Barrier Reef, Australia. Mar Biol 125:795–800CrossRefGoogle Scholar
  15. Bellwood DR, Choat JH (1990) A functional analysis of grazing in parrotfishes (family Scaridae): the ecological implications. Environ Biol Fish 28:189–214CrossRefGoogle Scholar
  16. Bellwood DR, Wainwright PC (2002) The history and biogeography of fishes on coral reefs. In: Sale PF (ed) Coral reef fishes: dynamics and diversity in a complex ecosystem. Academic, San Diego, pp 5–32CrossRefGoogle Scholar
  17. Birkeland C, Lucas JS (1990) Acanthaster planci: major management problem of coral reefs. CRC Press, Boca Raton, 257 pGoogle Scholar
  18. Bruggemann JH, van Kessel AM, van Rooij JM, Breeman AM (1996) Bioerosion and sediment ingestion by the Caribbean parrotfish Scarus vetula and Sparisoma viride: implication of fish size, feeding mode and habitat use. Mar Ecol Prog Ser 134:59–71CrossRefGoogle Scholar
  19. Campbell SE (1982) Precambrian endoliths discovered. Nature 299:429–431CrossRefGoogle Scholar
  20. Carriker MR, Smith EH, Wilce RT (eds) (1969) Penetration of calcium carbonate substrates by lower plants and invertebrates. Am Zool 9:629–1020Google Scholar
  21. Chazottes V, Le Campion-Alsumard T, Peyrot-Clausade M, Cuet P (2002) The effects of eutrophication-related alterations to coral reef communities on agents and rates of bioerosion (Reunion Island, Indian Ocean). Coral Reefs 21:375–390Google Scholar
  22. Choat JH, Bellwood DR (1985) Interactions amongst herbivorous fishes on a coral reef: influence of spatial variation. Mar Biol 89:221–234CrossRefGoogle Scholar
  23. Choat JH, Robertson DR (1975) Protogynous hermaphroditism in fishes of the family Scaridae. In: Reinboth R (ed) Intersexuality in the animal kingdom. Springer, Berlin, pp 264–283Google Scholar
  24. Cloud PE Jr (1959) Geology of Saipan, Mariana Islands, Part 4. Submarine topography and shoal-water ecology. Geol Surv Prof Pap 280-K:361–445Google Scholar
  25. Coles SL, Marchetti J, Bolick H, Montgomery A (2007) Assessment of invasiveness of the orange keyhole sponge Mycale armata in Kaneohe Bay, O’ahu, Hawai’i. Final Report, Year 2 for Hawaii Coral Reef Initiative Research Program. Contribution No. 2007-002 to the Hawaii Biological Survey, 30 pGoogle Scholar
  26. Cooper TF, De’ath G, Fabricius KE, Lough JM (2008) Declining coral calcification in massive Porites in two nearshore regions of the northern Great Barrier Reef. Global Change Biol 14:529–538CrossRefGoogle Scholar
  27. Cortés J (1985) Preliminary observations of Alpheus simus Guerin-Meneville, 1856 (Crustacea: Alphaeidae): a little-known Caribbean bioeroder. Proc 5th Int Coral Reef Congr Tahiti 5:351–353Google Scholar
  28. Darwin C (1842) The structure and distribution of coral reefs. Smith Elder & Co., London, 214 pGoogle Scholar
  29. Davies PJ, Hutchings PA (1983) Initial colonization, erosion and accretion on coral substrate. Experimental results, Lizard Island, Great Barrier Reef. Coral Reefs 2:27–35CrossRefGoogle Scholar
  30. De’ath G, Lough JM, Fabricius KE (2009) Declining coral calcification on the Great Barrier Reef. Science 323:116–119PubMedCrossRefGoogle Scholar
  31. De’ath G, Fabricius KE, Sweatman H, Puotinen M (2012) The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc Natl Acad Sci U S A 109:17995–17999PubMedCentralPubMedCrossRefGoogle Scholar
  32. DiSalvo LH (1969) Isolation of bacteria from the corallum of Porites lobata (Vaughan) and its possible significance. Am Zool 9:735–740CrossRefGoogle Scholar
  33. Donn TF, Boardman MR (1988) Bioerosion of rocky carbonate coastlines on Andros Island, Bahamas. J Coastal Res 4:381–394Google Scholar
  34. Eakin CM (1993) Post-El Niño Panamanian reefs: less accretion, more erosion and damselfish protection. Proc 7th Int Coral Reef Symp Guam 1:387–396Google Scholar
  35. Eakin CM (1996) Where have all the carbonates gone? A model comparison of calcium carbonate budgets before and after the 1982–83 El Niño at Uva Island in the eastern Pacific. Coral Reefs 15:109–119Google Scholar
  36. Eakin CM (2001) A tale of two ENSO events: carbonate budgets and the influence of two warming disturbances and intervening variability, Uva Island, Panamá. Bull Mar Sci 69:171–186Google Scholar
  37. Eakin CM, Morgan JA, Heron SF, Smith TB, Liu G, Alvarez-Filip L, Baca B, Bartels E, Bastidas C, Bouchon C, Brant M, Bruckner AW, Bunkley-Williams L, Cameron A, Causey BC, Chiappone M, Christensen TRL, Crabbe MJC, Day O, de la Guardia E, Diaz-Pulido G, DiResta D, Gil-Agudelo DL, Gilliam D, Ginsburg R, Gore S, Guzman HM, Hendee JC, Hernandez-Delgado E, Husain E, Jeffrey CFG, Jones RJ, Jordan-Dahlgren E, Kaufman DM, Kline DI, Kramer P, Lang J, Lirman D, Mallela J, Manfrino C, Marechal J, Marks K, Mihaly J, Miller J, Muller EM, Muller M, Orozco-Toro CA, Oxenfor HA, Ponce-Taylor D, Quinn N, Ritchie KB, Rodriguez S, Rodriguez-Ramirez A, Romano S, Samhouri JF, Sanchez JA, Schmahl GP, Shank B, Skirving WJ, Steiner SCC, Villamizar E, Walsh S, Walter C, Weil E, Williams EH, Woody K, Yusuf Y (2010) Caribbean corals in crisis: record thermal stress, bleaching, and mortality in 2005. PLoS One 5:e13969PubMedCentralPubMedCrossRefGoogle Scholar
  38. Ebbs NK (1966) The coral-inhabiting polychaetes of the northern Florida reef tract. Bull Mar Sci 16:485–555Google Scholar
  39. Edgar GJ, Banks SA, Brandt M, Bustamante RH, Chiriboga Á, Earle SA, Garske LE, Glynn PW, Grove JS, Henderson S, Hickman CP, Miller KA, Rivera F, Wellington GM (2010) El Niño, grazers and fisheries interact to greatly elevate extinction risk for Galapagos marine species. Global Change Biol 16:2876–2890CrossRefGoogle Scholar
  40. Edmunds PJ (2007) Evidence for a decadal-scale decline in the growth rates of juvenile scleractinian corals. Mar Ecol Prog Ser 341:1–13CrossRefGoogle Scholar
  41. Ekdale AA, Bromley RG, Pemberton SG (eds) (1984) Ichnology: the use of trace fossils in sedimentology and stratigraphy. SEPM short course notes, Ch 10, 15:108–128. doi:  10.2110/scn.84.15
  42. Endean R (1976) Destruction and recovery of coral reef communities. In: Jones OA, Endean R (eds) Biology and geology of coral reefs. III. Biology 2. Academic, New York, pp 215–254CrossRefGoogle Scholar
  43. Enochs IC (2012) Motile cryptofauna associated with live and dead coral substrates: implications for coral mortality and framework erosion. Mar Biol 159:709–722CrossRefGoogle Scholar
  44. Enochs IC, Manzello DP (2012a) Species richness of motile cryptofauna across a gradient of framework erosion. Coral Reefs 31:653–661CrossRefGoogle Scholar
  45. Enochs IC, Manzello DP (2012b) Responses of cryptofaunal species richness and trophic potential to coral reef habitat degradation. Diversity 4:94–104CrossRefGoogle Scholar
  46. Enochs IC, Manzello DP, Carlton R, Graham D, Ruzicka R, Colella M (2015) Ocean acidification enhances the bioerosion of a common coral reef sponge: implications for persistence of the Florida Reef Tract. Bull Mar Sci 91(2):271–290CrossRefGoogle Scholar
  47. Fang JKH, Mello-Athayde MA, Schönberg CHL, Kline DI, Hoegh-Guldberg O, Dove S (2013a) Sponge biomass and bioerosion rates increase under ocean warming and acidification. Global Change Biol. doi: 10.1111/gcb.12334 Google Scholar
  48. Fang JKH, Schönberg CHL, Mello-Athayde MA, Hoegh-Guldberg O, Dove S (2013b) Effects of ocean warming and acidification on the energy budget of an excavating sponge. Global Change Biol. doi: 10.1111/gcb.12369 Google Scholar
  49. Focke JW (1978) Limestone cliff morphology on Curaçao (Netherlands Antilles) with special attention to the origin of notches and vermetid/coralline algal surf benches (“cornices”, “trottoirs”). Z Geomorphol 22:329–349Google Scholar
  50. Frieler K, Meinhausen M, Golly A, Mengel M, Lebek K, Donner SD, Hoegh-Guldberg O (2013) Limiting global warming to 2°C is unlikely to save most coral reefs. Nat Clim Chang 3:165–170CrossRefGoogle Scholar
  51. Frydl P, Stearn GW (1978) Rate of bioerosion by parrotfish in Barbados reef environments. J Sediment Petrol 48:1149–1157Google Scholar
  52. Gardner TA, Côté IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in Caribbean corals. Science 301:958–960PubMedCrossRefGoogle Scholar
  53. Ginsburg RN (1983) Geological and biological roles of cavities in coral reefs. In: Barnes DJ (ed) Perspectives on coral reefs. Brian Clouston, Manuka, pp 148–153Google Scholar
  54. Glynn PW (1970) On the ecology of the Caribbean chitons Acanthopleura granulata Gmelin and Chiton tuberculatus Linné: density, mortality, feeding, reproduction, and growth. Smithson Contrib Zool 66:1–21CrossRefGoogle Scholar
  55. Glynn PW (1988) El Niño warming, coral mortality and reef framework destruction by echinoid bioerosion in the eastern Pacific. Galaxea 7:129–160Google Scholar
  56. Glynn PW (1990a) Feeding ecology of selected coral-reef macroconsumers: patterns and effects on coral community structure. In: Dubinsky Z (ed) Ecosystems of the world, vol 25, Coral reefs. Elsevier Science, New York, pp 365–400Google Scholar
  57. Glynn PW (1990b) Coral mortality and disturbance to coral reefs in the eastern tropical Pacific. In: Glynn PW (ed) Global ecological consequences of the 1982–83 El Niño-Southern Oscillation. Elsevier, Amsterdam, pp 55–126CrossRefGoogle Scholar
  58. Glynn PW (1994) State of coral reefs in the Galápagos Islands: natural vs anthropogenic impacts. Mar Pollut Bull 29:131–140CrossRefGoogle Scholar
  59. Glynn PW, Wellington GM (1983) Corals and coral reefs of the Galápagos Islands (with an annotated list of the scleractinian corals of the Galápagos by JW Wells). University of California Press, Berkeley, 330 pGoogle Scholar
  60. Glynn PW, Stewart RH, McCosker JE (1972) Pacific coral reefs of Panamá: structure, distribution and predators. Geol Rundsch 61:483–519CrossRefGoogle Scholar
  61. Glynn PW, Wellington GM, Birkeland C (1979) Coral growth in the Galápagos: limitation by sea urchins. Science 203:47–49PubMedCrossRefGoogle Scholar
  62. Glynn PW, Maté JL, Baker AC, Calderón MO (2001) Coral bleaching and mortality in Panamá and Ecuador during the 1997–1998 El Niño-Southern Oscillation event: spatial/temporal patterns and comparisons with the 1982–1983 event. Bull Mar Sci 69:79–101Google Scholar
  63. Glynn PW, Riegl B, Correa AMS, Baums IB (2009) Rapid recovery of a coral reef at Darwin Island, Galápagos Islands. Galapagos Res 66:6–13Google Scholar
  64. Glynn PW, Enochs IC, Afflerbach JA, Brandtneris VW, Serafy JE (2014) Eastern Pacific reef fish responses to coral recovery following El Niño disturbances. Mar Ecol Prog Ser 495:233–247CrossRefGoogle Scholar
  65. Glynn PW, Riegl B, Purkis S, Kerr JM, Smith TB (2015) Coral reef recovery in the Galápagos Islands: the northernmost islands (Darwin and Wenman). Coral Reefs 34:421–436Google Scholar
  66. Golubic S, Perkins RD, Lukas KJ (1975) Boring microorganisms and microborings in carbonate substrates. In: Frey RW (ed) The study of trace fossils. Springer, New York, pp 229–259CrossRefGoogle Scholar
  67. Golubic S, Radtke G, Le Campion-Alsumard T (2005) Endolithic fungi in marine ecosystems. Trends Microbiol 13:229–235PubMedCrossRefGoogle Scholar
  68. Grassle JF (1973) Variety in coral reef communities. In: Jones OA, Endean R (eds) Biology and geology of coral reefs. II, Biology 1. Academic, New York, pp 247–270CrossRefGoogle Scholar
  69. Grigg RW, Dollar SJ (1990) Natural and anthropogenic disturbance on coral reefs. In: Dubinsky Z (ed) Ecosystems of the world, vol 25, Coral reefs. Elsevier Science, New York, pp 439–452Google Scholar
  70. Haigler SA (1969) Boring mechanism of Polydora websteri inhabiting Crassostrea virginica. Am Zool 9:821–828CrossRefGoogle Scholar
  71. Highsmith RC (1980) Geographic patterns of coral bioerosion: a productivity hypothesis. J Exp Mar Biol Ecol 46:177–196CrossRefGoogle Scholar
  72. Highsmith RC (1981a) Lime-boring algae in hermatypic coral skeletons. J Exp Mar Biol Ecol 55:267–281CrossRefGoogle Scholar
  73. Highsmith RC (1981b) Coral bioerosion: damage relative to skeletal density. Am Nat 117:193–198CrossRefGoogle Scholar
  74. Highsmith RC (1982) Reproduction by fragmentation in corals. Mar Ecol Prog Ser 7:207–226CrossRefGoogle Scholar
  75. Hill MS, Hill AL (2002) Morphological plasticity in the tropical sponge Anthosigmella varians: responses to predators and wave energy. Biol Bull 202:86–95PubMedCrossRefGoogle Scholar
  76. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742PubMedCrossRefGoogle Scholar
  77. Holmes KE, Edinger EN, Limmon GV, Risk MJ (2000) Bioerosion of live massive corals and branching coral rubble on Indonesian coral reefs. Mar Pollut Bull 40:606–617CrossRefGoogle Scholar
  78. Hönisch B, Ridgwell A, Schmidt DN, Thomas E, Gibbs SJ, Sluijs A, Zeebe R, Kump L, Martindale RC, Greene SE, Kiessling W, Ries J, Zachos JC, Royer DL, Barker S, Marchitto TM, Moyer R, Pelejero C, Ziveri P, Foster GI, Williams B (2012) The geological record of ocean acidification. Science 335:1058–1063PubMedCrossRefGoogle Scholar
  79. Hudson JH, Diaz R (1988) Damage survey and restoration of M/V WELLWOOD grounding site, Molasses Reef, Key Largo National Marine Sanctuary, Florida. Proc 6th Int Coral Reef Symp Townsville 2:231–236Google Scholar
  80. Hughes TP (1994) Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265:1547–1551PubMedCrossRefGoogle Scholar
  81. Hutchings PA (1986) Biological destruction of coral reefs. Coral Reefs 4:239–252CrossRefGoogle Scholar
  82. Hutchings PA (1994) The Pacific reefs: a paradise lost? Mar Pollut Bull 29:1–140CrossRefGoogle Scholar
  83. Hutchings PA (2011) Bioerosion. In: Hopley D (ed) Encyclopedia of modern coral reefs: structure, form and process. Springer, Dordrecht, pp 139–156CrossRefGoogle Scholar
  84. IPCC (2007) Intergovernmental panel on climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis: contribution of working group I to the fourth assessment report of the IPCC. Cambridge University Press, New YorkGoogle Scholar
  85. Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warner RR (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–638PubMedCrossRefGoogle Scholar
  86. Jokiel PL (1986) Growth of the reef coral Porites compressa on the Coconut Island reef, Kaneohe Bay. In: Jokiel PL, Richmond RH, Rogers RA (eds) Coral reef population biology, Tech Rept No 37, Hawaii Inst Mar Biol, Oahu, pp 101–110Google Scholar
  87. Jokiel PL, Hunter CL, Taguchi S, Watarai L (1993) Ecological impact of a fresh-water “reef kill” in Kaneohe Bay, Oahu, Hawaii. Coral Reefs 12:177–184CrossRefGoogle Scholar
  88. Kendrick B, Risk MJ, Michaelides J, Bergman K (1982) Amphibious microborers: bioeroding fungi isolated from live corals. Bull Mar Sci 32:862–867Google Scholar
  89. Kennedy EV, Perry CT, Halloran PR, Iglesias-Prieto R, Schönberg CHL, Wisshak M, Form AU, Carricart-Ganivet JP, Fine M, Eakin CM, Mumby PJ (2013) Avoiding coral reef functional collapse requires local and global action. Curr Biol 23:912–918PubMedCrossRefGoogle Scholar
  90. Kiene WE (1988) A model of bioerosion on the Great Barrier Reef. Proc 6th Int Coral Reef Symp Townsville 3:449–454Google Scholar
  91. Kinsey DW (1983) Standards of performance in coral reef primary production and carbonate turnover. In: Barnes DJ (ed) Perspectives on coral reefs. Brian Clouston, Manuka, pp 209–220Google Scholar
  92. Kleypas JA, Buddemeier RW, Archer D, Gattuso J-P, Langdon C, Opdyke BN (1999a) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120PubMedCrossRefGoogle Scholar
  93. Kleypas JA, McManus JW, Meñez LAB (1999b) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159CrossRefGoogle Scholar
  94. Langdon C, Atkinson MJ (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J Geophys Res 110:1–16Google Scholar
  95. Le Campion-Alsumard T, Golubic S, Priess K (1995) Fungi in corals: symbiosis or disease? Interaction between polyps and fungi causes pearl-like biomineralization. Mar Ecol Prog Ser 117:137–147CrossRefGoogle Scholar
  96. Leão ZMAN, Telles MD, Sforza R, Bulhões HA, Kikuchi RKP (1993) Impact of tourism development on the coral reefs of the Abrolhos area, Brazil. In: Ginsburg RN (compiler) Global aspects of coral reefs: health, hazards and history. Rosenstiel School of Marine and Atmospheric Science, University of Miami, Coral Gables, FL, pp 254–260Google Scholar
  97. Lirman D, Schopmeyer S, Manzello D, Gramer LJ, Precht WF, Muller-Karger F, Banks K, Barnes B, Bartels E, Bourque A, Byrne J, Donahue S, Duquesnel J, Fisher L, Gilliam D, Hendee J, Johnson M, Maxwell K, McDevitt E, Monty J, Rueda D, Ruzicka R, Thanner S (2011) Severe 2010 cold-water event caused unprecedented mortality to corals of the Florida Reef Tract and reversed previous survivorship patterns. PLoS One 6:e23047PubMedCentralPubMedCrossRefGoogle Scholar
  98. Lowenstam HA (1974) Impact of life on chemical and physical processes. In: Goldberg ED (ed) The sea, vol 5, Marine Chemistry. Wiley, New York, pp 715–796Google Scholar
  99. Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, New York, 324 pGoogle Scholar
  100. Macintyre IG (1984) Preburial and shallow-subsurface alteration of modern scleractinian corals. In: Oliver WA Jr, Sando WJ, Cairns SD, Coates AG, Macintyre IG, Bayer FM, Sorauf JE (eds) Recent advances in the paleobiology and geology of the Cnidaria. Palaeontographica Americana, Ithaca, New York, 54, pp 229–244Google Scholar
  101. Macintyre IG (1997) Reevaluating the role of crustose coralline algae in the construction of coral reefs. Proc 8th Intl Coral Reef Symp Panama 1:725–730Google Scholar
  102. Manzello DP (2009) Reef development and resilience to acute (El Niño warming) and chronic (high-CO2) disturbances in the eastern tropical Pacific: a real-world climate change model. Proc 11th Intl Coral Reef Symp Ft Lauderdale 1:1299–1304Google Scholar
  103. Manzello DP (2010a) Ocean acidification hotspots: spatiotemporal dynamics of the seawater CO2 system of eastern Pacific coral reefs. Limnol Oceanogr 55:239–248CrossRefGoogle Scholar
  104. Manzello DP (2010b) Coral growth with thermal stress and ocean acidification: lessons from the eastern tropical Pacific. Coral Reefs 29:749–758CrossRefGoogle Scholar
  105. Manzello DP, Kleypas JA, Budd DA, Eakin CM, Glynn PW, Langdon C (2008) Poorly cemented coral reefs of the eastern tropical Pacific: possible insights into reef development in a high-CO2 world. Proc Natl Acad Sci U S A 105:10450–10455PubMedCentralPubMedCrossRefGoogle Scholar
  106. Manzello DP, Enochs IC, Bruckner A, Renaud P, Kolodziej G, Budd DA, Carlton R, Glynn PW (2014) Galápagos coral reef persistence after ENSO warming across an acidification gradient. Geophys Res Lett 41:9001–9008Google Scholar
  107. May JA, Macintyre IG, Perkins RD (1982) Distribution of microborers within planted substrates along a barrier reef transect, Carrie Bow Cay, Belize. In: Rützler K, Macintyre IG (eds) The Atlantic barrier reef ecosystem at Carrie Bow Cay, Belize I: structure and communities, Smith Contrib Mar Sci, Washington DC,12, 539 pGoogle Scholar
  108. McClanahan TR, Shafir SH (1990) Causes and consequences of sea urchin abundance and diversity in Kenyan coral reef lagoons. Oecologia 83:362–370CrossRefGoogle Scholar
  109. McLean RF (1967) Measurement of beach rock erosion by some tropical marine gastropods. Bull Mar Sci 17:551–561Google Scholar
  110. Moran PJ (1986) The Acanthaster phenomenon. Oceanogr Mar Biol Ann Rev 24:379–480Google Scholar
  111. Neumann AC (1966) Observations on coastal erosion in Bermuda and measurements of the boring rates of the sponge Cliona lampa. Limnol Oceanogr 11:92–108CrossRefGoogle Scholar
  112. Ogden JC (1977) Carbonate-sediment production by parrotfish and sea urchins on Caribbean reefs. In: Frost SH, Weiss MP, Saunders JB (eds) Reefs and related carbonates—ecology and sedimentology. Studies in geology 4. American Association of Petroleum Geologists, Tulsa, pp 281–288Google Scholar
  113. Pari N, Peyrot-Clausade M, Le Campion-Alsumard T, Hutchings P, Chazottes V, Golubic S, Le Campion J, Fontaine MF (1998) Bioerosion of experimental substrates on high islands and on atoll lagoons (French Polynesia) after two years of exposure. Mar Ecol Prog Ser 166:119–130CrossRefGoogle Scholar
  114. Pearson RG (1981) Recovery and recolonization of coral reefs. Mar Ecol Prog Ser 4:105–122CrossRefGoogle Scholar
  115. Perry CT, Hepburn LJ (2008) Syn-depositional alteration of coral reef framework through bioerosion, encrustation and cementation: taphonomic signatures of reef accretion and reef depositional events. Earth Sci Rev 86:106–144CrossRefGoogle Scholar
  116. Perry CT, Edinger EN, Kench PS, Murphy GN, Smithers SG, Steneck RS, Mumby PJ (2012) Estimating rates of biologically driven coral reef framework production and erosion: a new census-based carbonate budget methodology and applications to the reefs of Bonaire. Coral Reefs 31:853–868CrossRefGoogle Scholar
  117. Perry CT, Murphy GN, Kench PS, Smithers SG, Edinger EN, Steneck RS, Mumby PJ (2013) Caribbean-wide decline in carbonate production threatens coral reef growth. Nature Commun 4:1–7CrossRefGoogle Scholar
  118. Peters EC (1984) A survey of cellular reactions to environmental stress and disease in Caribbean scleractinian corals. Helgoländer Meeresun 37:113–137CrossRefGoogle Scholar
  119. Podestá GP, Glynn PW (2001) The 1997–98 El Niño event in Panamá and Galápagos: an update of thermal stress indices relative to coral bleaching. Bull Mar Sci 69:43–60Google Scholar
  120. Pomponi SA (1979) Ultrastructure and cytochemistry of the etching area of boring sponges. In: Lévi C, Boury-Esnault N (eds) Biologie des Spongiaires, Colloques Internationaux du Centre National de la Recherche Scientifique, Paris, 291, pp 317–323Google Scholar
  121. Randall JE (1974) The effects of fishes on coral reefs. Proc 2nd Int Coral Reef Symp Brisbane 1:159–166Google Scholar
  122. Rasmussen KA, Frankenberg EW (1990) Intertidal bioerosion by the chiton Acanthopleura granulata; San Salvador, Bahamas. Bull Mar Sci 47:680–695Google Scholar
  123. Reaka-Kudla ML, Feingold JS, Glynn PW (1996) Experimental studies of rapid bioerosion of coral reefs in the Galápagos Islands. Coral Reefs 15:101–107CrossRefGoogle Scholar
  124. Reyes-Nivia C, Diaz-Pulido G, Kline D, Hoegh-Guldberg O, Dove S (2013) Ocean acidification and warming scenarios increase microbioerosion of coral skeletons. Global Chang Biol 19:1919–1929CrossRefGoogle Scholar
  125. Rice ME, Macintyre IG (1972) A preliminary study of sipunculan burrows in rock thin sections. Carib J Sci 12:41–44Google Scholar
  126. Rice ME, Macintyre IG (1982) Distribution of Sipuncula in the coral reef community, Carrie Bow Cay, Belize. In: Rützler K, Macintyre IG (eds) The Atlantic barrier reef ecosystem at Carrie Bow Cay, Belize I: structure and communities. Smithson Contrib Mar Sci, Washington, DC, pp 311–320Google Scholar
  127. Risk MJ, MacGeachy JK (1978) Aspects of bioerosion of modern Caribbean reefs. Rev Biol Trop 26(suppl 1):85–105Google Scholar
  128. Risk MJ, Sammarco PW (1982) Bioerosion of corals and the influence of damselfish territoriality: a preliminary study. Oecologia 52:376–380CrossRefGoogle Scholar
  129. Risk MJ, Dunn JJ, Allison WR, Horrill C (1993) Reef monitoring in Maldives and Zanzibar: low-tech and high-tech science. In: Ginsburg RN (compiler) Global aspects of coral reefs: health, hazards and history. Rosenstiel School of Marine and Atmospheric Science, University of Miami, Coral Gables, pp 66–72Google Scholar
  130. Risk MJ, Sammarco PW, Edinger EN (1995) Bioerosion in Acropora across the continental shelf of the Great Barrier Reef. Coral Reefs 14:79–86CrossRefGoogle Scholar
  131. Rose CS, Risk MJ (1985) Increase in Cliona delitrix infestation of Montastraea cavernosa heads on an organically polluted portion of the Grand Cayman fringing reef. PSZNI Mar Ecol 6:345–363CrossRefGoogle Scholar
  132. Russo AR (1980) Bioerosion by two rock boring echinoids (Echinometra mathaei and Echinometra aciculatus) on Enewetak Atoll, Marshall Islands. J Mar Res 38:99–110Google Scholar
  133. Rützler K (1974) The burrowing sponges of Bermuda. Smithson Contrib Zool 165:1–32CrossRefGoogle Scholar
  134. Rützler K (1975) The role of burrowing sponges in bioerosion. Oecologia 19:203–216CrossRefGoogle Scholar
  135. Rützler K (2002) Impact of crustose clionid sponges on Caribbean reef corals. Acta Geol Hisp 37:61–72Google Scholar
  136. Rützler K, Rieger G (1973) Sponge burrowing: fine structure of Cliona lampa penetrating calcareous substrata. Mar Biol 21:144–162CrossRefGoogle Scholar
  137. Rützler K, Santavy DL, Antonius A (1983) The black band disease of Atlantic reef corals. III. Distribution, ecology, and development. PSZNI Mar Ecol 4:329–358CrossRefGoogle Scholar
  138. Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T-H, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371PubMedCrossRefGoogle Scholar
  139. Sano M (2000) Stability of reef fish assemblages: responses to coral recovery after catastrophic predation by Acanthaster planci. Mar Ecol Prog Ser 198:121–130CrossRefGoogle Scholar
  140. Sano M, Shimizu M, Nose Y (1987) Long-term effects of destruction of hermatypic coral by Acanthaster planci infestation on reef fish communities of Iriomote Island, Japan. Mar Ecol Prog Ser 37:191–199CrossRefGoogle Scholar
  141. Schönberg CHL (2002) Substrate effects on the bioeroding demosponge Cliona orientalis. 1. Bioerosion rates. PSZNI Mar Ecol 23:313–326CrossRefGoogle Scholar
  142. Schönberg CHL, Ortiz JC (2009) Is sponge bioerosion increasing? Proc 11th Int Coral Reef Symp, Ft. Lauderdale, USA, pp 520–523Google Scholar
  143. Scoffin TP, Stearn CW, Boucher D, Frydl P, Hawkins CM, Hunter IG, MacGeachy JK (1980) Calcium carbonate budget of a fringing reef on the west coast of Barbados. Part II—Erosion, sediments and internal structure. Bull Mar Sci 30:475–508Google Scholar
  144. Scott PJB, Risk MJ (1988) The effect of Lithophaga (Bivalvia: Mytilidae) boreholes on the strength of the coral Porites lobata. Coral Reefs 7:145–151CrossRefGoogle Scholar
  145. Scott PJB, Risk MJ, Carriquiry JD (1988) El Niño, bioerosion and the survival of east Pacific reefs. Proc 6th Int Coral Reef Symp Townsville 2:517–520Google Scholar
  146. Smith SR, Ogden JC (eds) (1993) Status of recent history of coral reefs at the CARICOMP network of Caribbean marine laboratories. In: Ginsburg RN (compiler) Global aspects of coral reefs: health, hazards and history. Rosenstiel School of Marine and Atmospheric Science, University of Miami, Coral Gables, FL, pp 73–79Google Scholar
  147. Smith SV, Kimmerer WJ, Laws EA, Brock RE, Walsh TW (1981) Kaneohe Bay sewage diversion experiment: perspectives on ecosystem response to nutritional perturbation. Pac Sci 35:279–402Google Scholar
  148. Steneck RS (1983a) Quantifying herbivory on coral reefs: just scratching the surface and still biting off more than we can chew. In: Reaka ML (ed) The ecology of deep and shallow coral reefs. NOAA Symp Ser Undersea Res, Walpole, Maine 1:103–111Google Scholar
  149. Steneck RS (1983b) Escalating herbivory and resulting adaptive trends in calcareous algal crusts. Paleobiology 9:44–61Google Scholar
  150. Stimson J, Conklin E (2008) Potential reversal of a phase shift: the rapid decrease in the cover of the invasive green macroalga Dictyosphaeria cavernosa Forsskål on coral reefs in Kāne’ohe Bay, Oahu, Hawai’i. Coral Reefs 27:717–726CrossRefGoogle Scholar
  151. Tanzil JTI, Brown BE, Tudhope AW, Dunne RP (2009) Decline in skeletal growth of the coral Porites lutea from the Andaman Sea, South Thailand between 1984 and 2005. Coral Reefs 28:519–528CrossRefGoogle Scholar
  152. Tomascik T, Mah AJ, Nontji A, Moosa MK (1997) The ecology of the Indonesian seas. Vol. 8, part II, chapters 13–23, Oxford University Press, Oxford, pp 1231–1239Google Scholar
  153. Tribollet A (2008) The boring microflora in modern coral reef ecosystems: a review of its roles. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, pp 67–94CrossRefGoogle Scholar
  154. Tribollet A, Golubic S (2005) Cross-shelf differences in the pattern and pace of bioerosion of experimental carbonate substrates exposed for 3 years on the northern Great Barrier Reef, Australia. Coral Reefs 24:422–434CrossRefGoogle Scholar
  155. Tribollet A, Golubic S (2011) Reef bioerosion: agents and processes. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Dordrecht, pp 435–449CrossRefGoogle Scholar
  156. Tribollet A, Godinot C, Atkinson M, Langdon C (2009) Effects of elevated pCO2 on dissolution of coral carbonates by microbial euendoliths. Global Biogeochem Cycles 23:1–7Google Scholar
  157. Trudgill ST (1976) The marine erosion of limestones on Aldabra Atoll, Indian Ocean. Z Geomorph NF Suppl Bd 26:164–200Google Scholar
  158. Trudgill ST (1983) Measurements of rates of erosion of reefs and reef limestones. In: Barnes DJ (ed) Perspectives on coral reefs. Brian Clouster, Manuka, pp 256–262Google Scholar
  159. Tudhope AW, Risk MJ (1985) Rate of dissolution of carbonate sediments by microboring organisms, Davies Reef, Australia. J Sediment Petrol 55:440–447Google Scholar
  160. Tunnicliffe V (1979) The role of boring sponges in coral fracture. In: Levi C and Boury-Esnault N (eds) Biologie des spongiaires. Centre National de la Recherche Scientifique, Paris, No. 291, pp 309–315Google Scholar
  161. van Hooidonk R, Maynard J, Manzello DP, Planes S (2014) Opposite latitudinal gradients in projected ocean acidification and bleaching impacts on coral reefs. Global Chang Biol. doi: 10.1111/gcb.12394 Google Scholar
  162. Vénec-Peyré M-T (1996) Bioeroding foraminifera: a review. Mar Micropaleontol 28:19–30CrossRefGoogle Scholar
  163. Vermeij GJ (1987) Evolution and escalation, an ecological history of life. Princeton University Press, Princeton, 531 pGoogle Scholar
  164. Vogel K (1993) Bioeroders in fossil reefs. Facies 28:109–114CrossRefGoogle Scholar
  165. Ward-Paige CA, Risk MJ, Sherwood OA, Jaap WC (2005) Clionid sponge surveys on the Florida Reef Tract suggest land-based nutrient inputs. Mar Pollut Bull 51:570–579PubMedCrossRefGoogle Scholar
  166. Warme JE (1975) Borings as trace fossils, and the processes of marine bioerosion. In: Frey RW (ed) The study of trace fossils. Springer, New York, pp 181–227CrossRefGoogle Scholar
  167. Warme JE (1977) Carbonate borers—their role in reef ecology and preservation. In: Frost SH, Weiss MP, Saunders JB (eds) Reefs and related carbonates—ecology and sedimentology. AAPG Stud Geol 4, American Association of Petroleum Geologists, Tulsa, pp 261–279Google Scholar
  168. Wellington GM, Glynn PW (2007) Responses of coral reefs to El Niño-Southern Oscillation sea-warming events. In: Aronson RB (ed) Geological approaches to coral reef ecology. Springer, New York, pp 342–385Google Scholar
  169. Wilkinson CR (1983) Role of sponges in coral reef structural processes. In: Barnes DJ (ed) Perspectives on coral reefs. Brian Clouston, Manuka, pp 263–274Google Scholar
  170. Wilson MA (2008) An online bibliography of bioerosion references. In: Wisshack M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, pp 473–478CrossRefGoogle Scholar
  171. Wisshak M, Schönberg CHL, Form A, Freiwald A (2012) Ocean acidification accelerates reef bioerosion. PLoS One 7:e45124PubMedCentralPubMedCrossRefGoogle Scholar
  172. Zea S, Weil E (2003) Taxonomy of the Caribbean excavating sponge species complex Cliona caribbaea-C. aprica-C. langae (Porifera, Hadromerida, Clionaidae). Carib J Sci 39:348–370Google Scholar
  173. Zundelevich A, Lazar B, Ilan M (2007) Chemical versus mechanical bioerosion of coral reefs by boring sponges-lessons from Pione cf. vastifica. J Exp Biol 210:91–96PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiUSA
  2. 2.Ocean Chemistry and Ecosystems DivisionAtlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric AdministrationMiamiUSA

Personalised recommendations