Skip to main content

Functional Neuromonitoring in Acquired Head Injury

  • Chapter
Recent Progress in Brain and Cognitive Engineering

Part of the book series: Trends in Augmentation of Human Performance ((TAHP,volume 5))

  • 1549 Accesses

Abstract

Patients with acquired head injury require accurate and rapid diagnosis regarding their neurophysiological status. As a timely detection of the neuropathological changes in injured brain is important for patient management, a real-time neurological monitoring is common procedure performed in a neurointensive care unit. The neuromonitoring is conducted via acquisition and analysis of various physiological parameters, such as intracranial pressure, cerebral perfusion pressure, intracranial compliance, cerebral autoregulatory capacity, cerebral oxygenation, etc. This article introduces major concepts and parameters in describing the neurological condition of head injured patients. Engineers and scientists who are interested in inter-disciplinary research with neuro-intensivists or neurosurgeons are the intended audience of this article.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABP:

arterial blood pressure

AHI:

acquired head injury

AMP:

pulse amplitude of ICP

CA:

cerebral auto-regulation

CBF:

cerebral blood flow

Cox:

correlation coefficient between oxygen saturation and CPP

CPP:

cerebral perfusion pressure

CSF:

cerebrospinal fluid

CT:

computed tomography

CVR:

cerebrovascular resistance

HVx:

correlation between rTHb and mean arterial blood pressure

ICP:

intracranial pressure

LLA:

lower limits of auto-regulation

MRA:

magnetic resonance angiography

MRI:

magnetic resonance imaging

Mx:

index of auto-regulation changes in CPP and the velocity of CBF

NIRS:

near infrared spectroscopy

Optimal CPP:

optimal cerebral perfusion pressure

PET:

positron emission tomography

PRx:

pressure reactivity index

PVC:

pressure-volume curve

RAP:

pressure-volume compensatory index

rTHb:

relative total hemoglobin

TBI:

traumatic brain injury

TCD:

transcranial Doppler

ULA:

upper limits of auto-regulation

References

  1. Towfighi A, Saver JL (2011) Stroke declines from third to fourth leading cause of death in the United States: historical perspective and challenges ahead. Stroke 42(8):2351–2355. doi:10.1161/strokeaha.111.621904 [published Online First: Epub Date]

  2. Gean AD, Fischbein NJ (2010) Head trauma. Neuroimaging Clin N Am 20(4):527–556. doi:10.1016/j.nic.2010.08.001 [published Online First: Epub Date]

  3. Jones PA, Andrews PJ, Midgley S et al (1994) Measuring the burden of secondary insults in head-injured patients during intensive care. J Neurosurg Anesthesiol 6(1):4–14

    Article  CAS  PubMed  Google Scholar 

  4. Reilly PL (2001) Brain injury: the pathophysiology of the first hours. ‘Talk and Die revisited’. J Clin Neurosci Off J Neurosurg Soc Australas 8(5):398–403. doi:10.1054/jocn.2001.0916 [published Online First: Epub Date]

  5. Talsky A, Pacione LR, Shaw T et al (2010) Pharmacological interventions for traumatic brain injury. B C Med J 53(1): 26–31

    Google Scholar 

  6. Mendelow AD, Crawford PJ (2005) Primary and secondary brain injury. In: Bullock PLRR (ed) Head injury – pathophysiology and management, 2nd edn. Hodder Education, Great Britain

    Google Scholar 

  7. Tisdall MM, Smith M (2007) Multimodal monitoring in traumatic brain injury: current status and future directions. Br J Anaesth 99(1):61–67. doi:10.1093/bja/aem143 [published Online First: Epub Date]

  8. Weerakkody RA, Czosnyka M, Trivedi RA et al (2009) Intracranial pressure monitoring in head injury. Cambridge University Press, Cambridge/New York/Melbourne/Madrid/Cape Town/Singapore/Sao Paulo/Delhi

    Google Scholar 

  9. Gilland O, Tourtellotte WW, O'Tauma L et al (1974) Normal cerebrospinal fluid pressure. J Neurosurg 40(5):587–593. doi:10.3171/jns.1974.40.5.0587 [published Online First: Epub Date]

  10. Langfitt TW, Weinstein JD, Kassell NF et al (1964) Transmission of increased intracranial pressure: II. Within the supratentorial space. J Neurosurg 21:998–1005. doi:10.3171/jns.1964.21.11.0998 [published Online First: Epub Date]

  11. Lundberg N (1960) Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr Scand Suppl 36(149):1–193

    CAS  PubMed  Google Scholar 

  12. Magnaes B (1976) Body position and cerebrospinal fluid pressure: Part 2: clinical studies on orthostatic pressure and the hydrostatic indifferent point. J Neurosurg 44(6): 698–705. doi:10.3171/jns.1976.44.6.0687 [published Online First: Epub Date]

  13. Magnaes B (1976) Body position and cerebrospinal fluid pressure: Part 1: Clinical studies on the effect of rapid postural changes. J Neurosurg 44(6):687–697. doi:10.3171/jns.1976.44.6.0687 [published Online First: Epub Date]

  14. Welch K (1980) The intracranial pressure in infants. J Neurosurg 52(5):693–699. doi:10.3171/jns.1980.52.5.0693 [published Online First: Epub Date]

  15. McAuley D (2009) Early phase care of patients with moderate and severe head injury. In: Whitfield PC, Thomas EO, Summers F, Whyte M, Hutchinson PJ (eds) Head injury: a multidisciplinary approach. Cambridge University Press, Cambridge, pp 62–78

    Google Scholar 

  16. Smith M (2009) Principle of head injury intensive care management. In: Whitfield PC, Thomas EO, Summers F, Whyte M, Hutchinson PJ (eds) Head injury: a multidisciplinary approach. Cambridge University Press, Cambridge, pp 79–86

    Google Scholar 

  17. Wagshul ME, Eide PK, Madsen JR (2011) The pulsating brain: a review of experimental and clinical studies of intracranial pulsatility. Fluids Barriers CNS 8(1):5. doi:10.1186/2045-8118-8-5 [published Online First: Epub Date]

  18. Fog M (1938) The relationship between the blood pressure and the tonic regulation of the pial arteries. J Neurol Psychiatry 1(3):187–197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Symon L, Held K, Dorsch NW (1973) A study of regional autoregulation in the cerebral circulation to increased perfusion pressure in normocapnia and hypercapnia. Stroke 4(2):139–147

    Article  CAS  PubMed  Google Scholar 

  20. Budohoski KP, Czosnyka M, Kirkpatrick PJ et al (2013) Clinical relevance of cerebral autoregulation following subarachnoid haemorrhage. Nat Rev Neurol. doi:10.1038/nrneurol.2013.11 [published Online First: Epub Date]

  21. Vincent JL, Berre J (2005) Primer on medical management of severe brain injury. Crit Care Med 33(6):1392–1399

    Article  PubMed  Google Scholar 

  22. Dutton RP, McCunn M (2003) Traumatic brain injury. Curr Opin Crit Care 9(6):503–509

    Article  PubMed  Google Scholar 

  23. Helmy A, Vizcaychipi M, Gupta AK (2007) Traumatic brain injury: intensive care management. Br J Anaesth 99(1):32–42. doi:10.1093/bja/aem139 [published Online First: Epub Date]

  24. Patel HC, Bouamra O, Woodford M et al (2005) Trauma audit and research network: trends in head injury outcome from 1989 to 2003 and the effect of neurosurgical care: an observational study. Lancet 366:1538–1544

    Article  CAS  PubMed  Google Scholar 

  25. Czosnyka M, Pickard JD (2004) Monitoring and interpretation of intracranial pressure. J Neurol Neurosurg Psychiatry 75(6):813–821

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Cremer OL, van Dijk GW, van Wensen E et al (2005) Effect of intracranial pressure monitoring and targeted intensive care on functional outcome after severe head injury. Crit Care Med 33(10):2207–2213

    Article  PubMed  Google Scholar 

  27. Resnick DK, Marion DW, Carlier P (1997) Outcome analysis of patients with severe head injuries and prolonged intracranial hypertension. J Trauma 42(6):1108–1111

    Article  CAS  PubMed  Google Scholar 

  28. Balestreri M, Czosnyka M, Hutchinson P et al (2006) Impact of intracranial pressure and cerebral perfusion pressure on severe disability and mortality after head injury. Neurocrit Care 4(1):8–13. doi:10.1385/NCC:4:1:008 [published Online First: Epub Date]

  29. Kim DJ, Czosnyka Z, Keong N et al (2009) Index of cerebrospinal compensatory reserve in hydrocephalus. Neurosurgery 64(3):494–501; discussion 01–2 doi:10.1227/01.NEU.0000338434.59141.89 [published Online First: Epub Date]

  30. Lofgren J, von Essen C, Zwetnow NN (1973) The pressure-volume curve of the cerebrospinal fluid space in dogs. Acta Neurol Scand 49(5):557–574

    CAS  PubMed  Google Scholar 

  31. Avezaat CJ, van Eijndhoven JH, Wyper DJ (1979) Cerebrospinal fluid pulse pressure and intracranial volume-pressure relationships. J Neurol Neurosurg Psychiatry 42(8):687–700

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Whitfield PC, Patel H, Hutchinson PJ et al (2001) Bifrontal decompressive craniectomy in the management of posttraumatic intracranial hypertension. Br J Neurosurg 15(6):500–507

    Article  CAS  PubMed  Google Scholar 

  33. Balestreri M, Czosnyka M, Steiner LA et al (2004) Intracranial hypertension: what additional information can be derived from ICP waveform after head injury? Acta Neurochir 146(2):131–141. doi:10.1007/s00701-003-0187-y [published Online First: Epub Date]

  34. Timofeev I, Czosnyka M, Nortje J et al (2008) Effect of decompressive craniectomy on intracranial pressure and cerebrospinal compensation following traumatic brain injury. J Neurosurg 108(1):66–73. doi:10.3171/JNS/2008/108/01/0066 [published Online First: Epub Date]

  35. Balestreri M, Czosnyka M, Steiner LA et al (2005) Association between outcome, cerebral pressure reactivity and slow ICP waves following head injury. Acta Neurochir Suppl95:25–28

    Article  CAS  PubMed  Google Scholar 

  36. Brady KM, Shaffner DH, Lee JK et al (2009) Continuous monitoring of cerebrovascular pressure reactivity after traumatic brain injury in children. Pediatrics 124(6):e1205–e1212. doi:10.1542/peds.2009-0550 [published Online First: Epub Date]

  37. Zweifel C, Lavinio A, Steiner LA et al (2008) Continuous monitoring of cerebrovascular pressure reactivity in patients with head injury. Neurosurg Focus 25(4):E2. doi:10.3171/FOC.2008.25.10.E2 [published Online First: Epub Date]

  38. Jaeger M, Dengl M, Meixensberger J et al (2010) Effects of cerebrovascular pressure reactivity-guided optimization of cerebral perfusion pressure on brain tissue oxygenation after traumatic brain injury. Crit Care Med 38(5):1343–1347. doi:10.1097/CCM.0b013e3181d45530 [published Online First: Epub Date]

  39. Steiner LA, Czosnyka M, Piechnik SK et al (2002) Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med 30(4):733–738

    Article  PubMed  Google Scholar 

  40. Timofeev I, Helmy A, Silva EJ et al (2009) Multimodality monitoring in head injury. In: Whitfield PC, Thomas EO, Summers F, Whyte M, Hutchinson PJ (eds) Head injury: a multidisciplinary approach. Cambridge University Press, Cambridge

    Google Scholar 

  41. Czosnyka M, Smielewski P, Lavinio A et al (2008) An assessment of dynamic autoregulation from spontaneous fluctuations of cerebral blood flow velocity: a comparison of two models, index of autoregulation and mean flow index. Anesth Analg 106(1):234–239, table of contents doi:10.1213/01.ane.0000295802.89962.13 [published Online First: Epub Date]

  42. Czosnyka M, Matta BF, Smielewski P et al (1998) Cerebral perfusion pressure in head-injured patients: a noninvasive assessment using transcranial Doppler ultrasonography. J Neurosurg 88(5):802–808. doi:10.3171/jns.1998.88.5.0802 [published Online First: Epub Date]

  43. Springborg JB, Frederiksen HJ, Eskesen V et al (2005) Trends in monitoring patients with aneurysmal subarachnoid haemorrhage. Br J Anaesth 94(3):259–270. doi:10.1093/bja/aei004 [published Online First: Epub Date]

  44. Bellner J, Romner B, Reinstrup P et al (2004) Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP). Surg Neurol 62(1):45–51; discussion 51 doi:10.1016/j.surneu.2003.12.007 [published Online First: Epub Date]

  45. Lavinio A, Schmidt EA, Haubrich C et al (2007) Noninvasive evaluation of dynamic cerebrovascular autoregulation using Finapres plethysmograph and transcranial Doppler. Stroke 38(2):402–404. doi:10.1161/01.STR.0000254551.92209.5c [published Online First: Epub Date]

  46. Ercole A, Gupta AK (2011) Cerebral oxygenation. In: Basil F, Matta DKM, Smith M (eds) Core topics in neuroanaesthesia and neurointensive care. Cambridge University Press, Cambridge

    Google Scholar 

  47. Brady KM, Lee JK, Kibler KK et al (2008) Continuous measurement of autoregulation by spontaneous fluctuations in cerebral perfusion pressure: comparison of 3 methods. Stroke 39(9):2531–2537. doi:10.1161/STROKEAHA.108.514877 [published Online First: Epub Date]

  48. Brady KM, Lee JK, Kibler KK et al (2007) Continuous time-domain analysis of cerebrovascular autoregulation using near-infrared spectroscopy. Stroke 38(10):2818–2825. doi:10.1161/STROKEAHA.107.485706 [published Online First: Epub Date]

  49. Lee JK, Kibler KK, Benni PB et al (2009) Cerebrovascular reactivity measured by near-infrared spectroscopy. Stroke 40(5):1820–1866. doi:10.1161/STROKEAHA.108.536094 [published Online First: Epub Date]

  50. Miller JD, Garibi J, Pickard JD (1973) Induced changes of cerebrospinal fluid volume: effects during continuous monitoring of ventricular fluid pressure. Arch Neurol 28(4):265–269

    Article  CAS  PubMed  Google Scholar 

  51. Ryder HW, Espey FF, Kimbell FD et al (1953) The mechanism of the change in cerebrospinal fluid pressure following an induced change in the volume of the fluid space. J Lab Clin Med 41(3):428–435

    CAS  PubMed  Google Scholar 

  52. Shulman K, Marmarou A (1971) Pressure‐volume considerations in infantile hydrocephalus. Dev Med Child Neurol 13(s25):90–95

    Google Scholar 

  53. Raabe A, Czosnyka M, Piper I et al (1999) Monitoring of intracranial compliance: correction for a change in body position. Acta Neurochir 141(1):31–36

    Article  CAS  PubMed  Google Scholar 

  54. Piper I, Spiegelberg A, Whittle I et al (1999) A comparative study of the Spiegelberg compliance device with a manual volume-injection method: a clinical evaluation in patients with hydrocephalus. Br J Neurosurg 13(6):581–586

    Article  CAS  PubMed  Google Scholar 

  55. Cardoso ER, Rowan JO, Galbraith S (1983) Analysis of the cerebrospinal fluid pulse wave in intracranial pressure. J Neurosurg 59(5):817–821

    Article  CAS  PubMed  Google Scholar 

  56. Novák D, Cuesta-Frau D, Aboy M, et al (2004) Clustering of intracranial pressure using hidden Markov models. In: 17th European meetings on cybernetics and systems research, Vienna, 13–16 April 2004

    Google Scholar 

  57. Kirkness CJ, Mitchell PH, Burr RL et al (2000) Intracranial pressure waveform analysis: clinical and research implications. J Neurosci Nurs 32(5):271–277

    Article  CAS  PubMed  Google Scholar 

  58. Robertson CS, Narayan RK, Contant CF et al (1989) Clinical experience with a continuous monitor of intracranial compliance. J Neurosurg 71(5):673–680

    Article  CAS  PubMed  Google Scholar 

  59. Ross N, Eynon C (2005) Intracranial pressure monitoring. Curr Anaesth Crit Care 16(4):255–261

    Article  Google Scholar 

  60. Balédent O, Gondry-Jouet C, Meyer M-E et al (2004) Relationship between cerebrospinal fluid and blood dynamics in healthy volunteers and patients with communicating hydrocephalus. Investig Radiol 39(1):45–55

    Article  Google Scholar 

  61. Strik C, Klose U, Erb M et al (2002) Intracranial oscillations of cerebrospinal fluid and blood flows: analysis with magnetic resonance imaging. J Magn Reson Imaging 15(3):251–258

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the use of text from the prior dissertation “Clinical and engineering models of brain compliance and deformation associated with neurological disorders.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Joo Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kim, H., Kim, YT., Kim, DJ. (2015). Functional Neuromonitoring in Acquired Head Injury. In: Lee, SW., Bülthoff, H., Müller, KR. (eds) Recent Progress in Brain and Cognitive Engineering. Trends in Augmentation of Human Performance, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7239-6_11

Download citation

Publish with us

Policies and ethics