Advertisement

Artificial Reproduction of Percid Fishes

  • D. ŻarskiEmail author
  • A. Horváth
  • J. A. Held
  • D. Kucharczyk

Abstract

Artificial reproduction, being a specific human intervention in the process of reproduction, is a key step in aquaculture of percid fishes. This group of fish, exhibits specific traits, considered amenable to artificial reproductive protocols. For example, this is the only extensively studied group of freshwater teleosts where application of human chorionic gonadotropin (hCG) and gonadoliberine analogues (GnRHa) alone, promotes final oocyte maturation (FOM) and spawning without any other hormonal therapy, whereas in other species (cyprinids, catfishes or salmonids) anti-dopaminergic treatment is also needed. Another characteristic trait is that percid females can release their eggs spontaneously in the tank, regardless of the presence of males. This makes artificial spawning of these fish relatively difficult. In the present chapter endocrine regulation as well as reproductive protocols applied to this group of fish are reviewed extensively, however, the focus of this review is on the final gamete maturation, spermiation and ovulation processes are the steps considered from artificial reproduction perspectives. The published data revealed that scientific activity was focused mainly on the problem of synchronization of ovulation and the effectiveness of different hormonal therapies. This evolved into the development of several specific protocols and methods (e.g. percid-specific pre-ovulatory maturational stages of oocytes), which allowed improvement of that in these species. It was also established, that hCG or GnRHa applied alone are the most effective spawning agents in wild or pond-reared percids. However, there is still a considerable lack of data considering the effectiveness of these protocols in controlled reproduction of domesticated broodstocks. Apart from that, there are many other aspects to be investigated. Such as hormonal regulation of final gamete maturation and spawning, verification of some reproductive protocols as possible gamete quality determinants and gamete management protocols (prior to and following fertilization), which were relatively scarcely studied.

Keywords

Hormonal regulation Fertilization Spermiation Ovulation Percids 

References

  1. Abdulfatah A, Fontaine P, Kestemont P, Gardeur JN, Marie M (2011) Effects of photothermal kinetics and amplitude of photoperiod decrease on the induction of the reproduction cycle in female Eurasian perch Perca fluviatilis. Aquaculture 322:169–176CrossRefGoogle Scholar
  2. Alavi SMH, Rodina M, Policar T, Kozak P, Pšenicka M, Linhart O (2007) Semen of Perca fluviatilis L.: sperm volume and density, seminal plasma indices and effects of dilution ratio, ions and osmolality on sperm motility. Theriogenology 68:276–283CrossRefGoogle Scholar
  3. Alavi SMH, Rodina M, Hatef A, Stejskal V, Policar T, Hamačkova J, Linhart O (2010) Sperm motility and monthly variations of semen characteristics in Perca fluviatilis (Teleostei: Percidae). Czech J Anim Sci 55:174–182Google Scholar
  4. Baras E, Kestemont P, Mélard C (2003) Effect of stocking density on the dynamics of cannibalism in sibling larvae of Perca fluviatilis under controlled conditions. Aquaculture 219:241–255CrossRefGoogle Scholar
  5. Barry TP, Malison JA, Lapp AF, Procarione LS (1995) Effects of selected hormones and male cohorts onfinal oocyte maturation, ovulation, and steroid production in walleye (Stizostedion vitreum). Aquaculture 138:331–347CrossRefGoogle Scholar
  6. Billard R, Fostier A, Weil C, Breton B (1982) Endocrine control of spermatogenesis in teleost fish. Can J Fish Aquat Sci 39:65–79CrossRefGoogle Scholar
  7. Bogerd J, Granneman JCM, Schulz RW, Vischer HF (2005) Fish FSH receptors bind LH: how to make the human FSH receptor to be more fishy? Gen Comp Endocrinol 142:34–43CrossRefGoogle Scholar
  8. Bokor Z, Müller T, Bercsėnyi M, Horváth L, Urbányi B, Horváth A (2007) Cryopreservation of sperm of two European percid species, the pikeperch (Sander lucioperca) and the Volga pikeperch (S. volgensis). Acta Biol Hung 58(2):199–207CrossRefGoogle Scholar
  9. Bokor Z, Horvath A, Horvath L, Urbanyi B (2008) Cryopreservation of pike perch sperm in hatchery conditions. Isr J Aquacult-Bamidgeh 60(3):166–169Google Scholar
  10. Bokor Z, Urbanyi B, Horvath L, Horvath A (2010) Commercial-scale cryopreservation of wels catfish (Silurus glanis) semen. Aquac Res 41:1549–1551Google Scholar
  11. Bradley JA, Goetz FW (1994) The inhibitory effect of indomethacin, nordihydroguaiaretic acid, and pyrrolidinedithiocarbamate on ovulation and prostaglandin synthesis in yellow perch (Perca flavens) follicle incubates. Prostaglandins 48:11–20CrossRefGoogle Scholar
  12. Brzuska E (1979) The in vivo method of estimating the stages of oocytes maturation in carp Cyprinus carpio L. Acta Hydrobiol 21:423–433Google Scholar
  13. Brzuska E (1988) Further investigation of in vivo estimation of the maturation stages of carp (Cyprinus carpio L.) females. Acta Hydrobiol 30:421–428Google Scholar
  14. Brzuska E (2005) Artificial spawning of carp (cyprinus carpio L.): differences between females of polish strain 6 and Hungarian strain W treated with carp pituitary homogenate, ovopel or dagin. Aquac Res 36:1015–1025CrossRefGoogle Scholar
  15. Casselman SJ, Schulte-Hostedde AI, Montgomerie R (2006) Sperm quality influences male fertilization success in walleye (Sander vitreus). Can J Fish Aquat Sci 63:2119–2125CrossRefGoogle Scholar
  16. Cejko BI, Kowalski RK, Żarski D, Dryl K, Targońska K, Chwaluczyk R, Kucharczyk D, Glogowski J (2012) The influence of the length of time after hormonal treatment with [(d-ala 6, pro 9 NEt)-mGnRH + metoclopramide] i.e. ovopel on barbel Barbus barbus (L.) milt quality and quantity indicators. J Appl Ichthyol 28:249–253CrossRefGoogle Scholar
  17. Cejko BI, Żarski D, Krejszeff S, Kucharczyk D, Kowalski RK (2013) Effect of hormonal stimulation of the Crucian Carp Carassius carassius (L.) on milt volume, number of sperm and its motility. Isr J Aquacult Bamidgeh (65: 912.)Google Scholar
  18. Ciereszko RE, Dąbrowski K, Ciereszko A (1997) Effects of temperature and photoperiod on reproduction of female yellow perch Perca flavescens: plasma concentrations of steroid hormones, spontaneous and induced ovulation, and quality of eggs. J World Aquacult Soc 28:344–356CrossRefGoogle Scholar
  19. Ciereszko RE, Dabrowski K, Ciereszko A, Ottobre JS (1998) Plasma concentrations of steroid hormones in male yellow perch, Perca flavescens: the effect of age and photothermal manipulation. Environ Biol Fish 51:97–105CrossRefGoogle Scholar
  20. Coward K, Bromage NR, Hibbitt O, Parrington J (2002) Gamete physiology, fertilization and egg activation in teleost fish. Rev Fish Biol Fish 12:33–58CrossRefGoogle Scholar
  21. Craig JF (2000) Percid fishes systematics. Ecology and exploitation. Blackwell Science, DunscoreCrossRefGoogle Scholar
  22. Czesny S, Dabrowski K (1998) The effect of egg fatty acid concentrations on embryo viability in wild and domesticated walleye (Stizostedion vitreum). Aquat Living Resour 11:371–378CrossRefGoogle Scholar
  23. Czesny S, Rinchard J, Dabrowski K (2005) Intrapopulation variation in egg lipid and fatty acid composition and embryo viability in a naturally spawning walleye population from an inland reservoir. N Am J Fish Manag 25:122–129CrossRefGoogle Scholar
  24. Dąbrowski K, Ciereszko A, Ramseyer L, Culver D, Kestemont P (1994) Effects of hormonal treatment on induced spermiation and ovulation in the yellow perch (Perca flavescens). Aquaculture 120(1–2):171–180CrossRefGoogle Scholar
  25. Dąbrowski K, Ciereszko RE, Ciereszko A, Toth GP, Christ SA, El-Saidy D, Ottobre JS (1996) Reproductive physiology of yellow perch (Perca flavescens): environmental and endocrinological cues. J Appl Ichthyol 12:139–148CrossRefGoogle Scholar
  26. Dąbrowski K, Czesny S, Kolkovski S, Lynch WE Jr (2000) Intensive culture of walleye larvae produced out of season and during regular season spaning. N Am J Aquac 62:219–224CrossRefGoogle Scholar
  27. Demska-Zakes K, Zakes Z, Roszuk J (2005) The use of tannic acid to remove adhesiveness from pikeperch, Sander lucioperca, eggs. Aquac Res 36:1458–1464CrossRefGoogle Scholar
  28. Devlin RH, Nagahama Y (2002) Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208:191–364CrossRefGoogle Scholar
  29. Fontaine P, Migaud H, Mandiki R, Gardeur JN, Kestemont P, Fostier A (2003) Involvement of sex steroids in final stages of oogenesis in Eurasian perch, Perca fluviatilis. Fish Physiol Biochem 28:331–332CrossRefGoogle Scholar
  30. Formicki K, Smaruj I, Szulc J, Winnicki A (2009) Microtubular network of the gelatinous egg envelope within the egg ribbon of European perch, Perca fluviatilis L. Acta Ichthyol Piscat 39:147–151CrossRefGoogle Scholar
  31. Garcìa-López Á, Bogerd J, Granneman JCM, van Dijk W, Trant JM, Taranger GL, Schulz RW (2009) Leydig cells express follicle-stimulating hormone receptors in African catfish. Endocrinology 150:357–365CrossRefGoogle Scholar
  32. Glogowski J, Kwasnik M, Piros B, Dabrowski K, Goryczko K, Dobosz S, Kuzminski H, Ciereszko A (2000) Characterization of rainbow trout milt collected with a catheter: semen parameters and cryopreservation success. Aquac Res 31:289–296CrossRefGoogle Scholar
  33. Goetz FW (1983) Hormonal control of oocyte final maturation and ovulation in fishes. In: Hoar WS, Randall DJ, Donaldson EM (eds) Fish physiology, vol IXB. Academic, New York, pp 117–170Google Scholar
  34. Goetz FW, Garczynski M (1997) The ovarian regulation of ovulation in teleost fish. Fish Physiol Biochem 17:33–38CrossRefGoogle Scholar
  35. Goetz FW, Theofan G (1979) In vitro stimulation of germinal vesicle breakdown and ovulation of yellow perch (Perca flavescens) oocytes. Effects of 17a-hydroxy-20ß-dihydroprogesterone and prostaglandins. Gen Comp Endocrinol 37:273–285CrossRefGoogle Scholar
  36. Goetz FW, Duman P, Berndtson A, Janowsky EG (1989) The role of prostaglandins in the control of ovulation in yellow perch, Perca flavescens. Fish Physiol Biochem 7(1–6):163–168CrossRefGoogle Scholar
  37. Grozea A, Telea A, Korbuly B (2008) Preliminary study regarding the efficiency of different hormones on pikeperch spermination. Faculty of animal science and biotechnologies. Timisoara 41(2):59–64Google Scholar
  38. Hearn MC (1980) Ovulation of pond-reared walleyes in response to various injection levels of human chorionic gonadotropin. Prog Fish Cult 42:228–230CrossRefGoogle Scholar
  39. Henrotte É, Overton JL, Kestemont P (2008) Effects of dietary n-3 and n-6 fatty acids levels on egg and larval quality of eurasian perch. Cybium 32(2 Suppl):271–272Google Scholar
  40. Henrotte E, Mandiki RSNM et al (2010) Egg and larval quality, and egg fatty acid composition of eurasian perch breeders (Perca fluviatilis) fed different dietary DHA/EPA/AA ratios. Aquac Res 41(9):53–61CrossRefGoogle Scholar
  41. Hermelink B, Wuertz S, Trubiroha A, Rennert B, Kloas W, Schulz C (2011) Influence of temperature on puberty and maturation of pikeperch, Sander lucioperca. Gen Comp Endocrinol 172:282–292CrossRefGoogle Scholar
  42. Hinshaw JM (2006) Species profile: yellow perch. Southern Regional Aquaculture Center publication no 7204. North Carolina State University. Stoneville, MS, USAGoogle Scholar
  43. Hokanson KEF (1977) Temperature requirements of some percids and adaptations to the seasonal temperature cycle. J Fish Res Board Can 34:1524–1550CrossRefGoogle Scholar
  44. Kagawa H, Tanaka H, Okuzawa K, Kobayashi M (1998) GTH II but not GTH I induces final maturation and the development of maturational competence of oocytes of red seabream in vitro. Gen Comp Endocrinol 112:80–88CrossRefGoogle Scholar
  45. Kayes T (1977) Reproductive biology and artificial propagation methods for adult perch. In: Soderberg RW (ed) Perch fingerling production for aquaculture, Advisory Report #421. University of Wisconsin Sea Grant Program, Madison, pp 6–21Google Scholar
  46. Kayes TB, Calhert HE (1979) Effect of photoperiod and temperature on the spawning of yellow perch (Perca flavescens). Proc World Maricult Soc 10:306–316CrossRefGoogle Scholar
  47. Kestemont P, Cooremans J, Abi-Ayad A, Mélard C (1999) Cathepsin L in eggs and larvae of perch perca fluviatilis: variations with developmental stage and spawning period. Fish Physiol Biochem 21(1):59–64CrossRefGoogle Scholar
  48. Kestemont P, Jourdan S, Houbart M, Me’lard C, Paspatis M, Fontaine P, Cuvier A, Kentouri M, Baras E (2003) Size heterogeneity, cannibalism and competition in cultured predatory fish larvae: biotic and abiotic influences. Aquaculture 227:333–356CrossRefGoogle Scholar
  49. Koenst WM, Smith LL Jr (1976) Thermal requirements of the early life history stages of walleye, Stizostedion vitreum vitreum, and sauger, Stizostedion canadense. J Fish Res Board Can 33:1130–1138CrossRefGoogle Scholar
  50. Kokurewicz B (1969) The influence of temperature on the embryonic development of the perches, Perca fluviatilis L. and Lucioperca lucioperca (L.). Zool Pol 19:47–67Google Scholar
  51. Kolkovski S, Dąbrowski K (1998) Off-season spawning of yellow perch. Prog Fish Cult 60:133–136CrossRefGoogle Scholar
  52. Kooten T, Andersson J, Byström P, Persson L, Roos AM (2010) Size at hatching determines population dynamics and response to harvesting in cannibalistic fish. Can J Fish Aquat Sci 67:401–416CrossRefGoogle Scholar
  53. Korbuly B, Grozea A, Cean A, Bănăţean-Dunea I, Păcală N (2010) Spawning latency period in hormonal induced reproduction of pikeperch (Sander lucioperca). SPASB 43:32–35Google Scholar
  54. Kouril J, Linhart O, Relot P (1997) Induced spawning of perch by means of a GnRH analogue. Aquac Int 5:375–377CrossRefGoogle Scholar
  55. Krejszeff S, Targońska K, Żarski D, Kucharczyk D (2009) Domestication affects spawning of the ide (Leuciscus idus)-preliminary study. Aquaculture 295:145–147CrossRefGoogle Scholar
  56. Krejszeff S, Targońska K, Żarski D, Kucharczyk D (2010) Artificial reproduction of two different spawn-forms of the chub. Reprod Biol 10:67–74CrossRefGoogle Scholar
  57. Krise WF (1988) Optimum protease exposure time for removing adhesiveness of walleye eggs. Prog Fish Cult 50:126–127CrossRefGoogle Scholar
  58. Krise WF, Bulkowski- Cummings L, Shellman AD, Kraus KA, Gould RW (1986) Increased walleye egg hatch and larval survival after protease treatment of eggs. Prog Fish Cult 48:95–100CrossRefGoogle Scholar
  59. Křišťan J, Stejskal V, Policar T (2012a) Comparison of reproduction characteristics and broodstock mortality in farmed and wild eurasian perch (Perca fluviatilis L.) females during spawning season under controlled conditions. Turk J Fish Aquat Sci 12:191–197CrossRefGoogle Scholar
  60. Křišťan J, Żarski D, Palińska K, Krejszeff S, Nowosad J, Alavi SMH, Policar T, Kucharczyk D (2012b) The effect of sperm to egg ratio on fertilization success in artificial insemination of pikeperch Sander lucioperca (L.). Domestication in Finfish Aquaculture, Department of Lake and River Fisheries of University of Warmia and Mazury, Olsztyn, 23–25 Oct, p 70.Google Scholar
  61. Křišťan J, Alavi SMH, Stejskal V, Policar T (2013) Hormonal induction of ovulation in pikeperch (Sander lucioperca L.) using human chorionic gonadotropin (hCG) and mammalian GnRH analogue. Aquac Int 21:811–818Google Scholar
  62. Król J, Kowalski RK, Hliwa P, Dietrich GJ, Stabiński R, Ciereszko A (2009) The effects of commercial preparations containing two different GnRH analogues and dopamine antagonists on spermiation and sperm characteristics in the European smelt Osmerus eperlanus (L.). Aquaculture 286:328–331CrossRefGoogle Scholar
  63. Kucharczyk D, Kujawa R, Mamcarz A, Skrzypczak A, Wyszomirska E (1996) Induced spawning in perch. Perca fluviatilis L. using carp pituitary extract and HCG. Aquac Res 27(11):847–852CrossRefGoogle Scholar
  64. Kucharczyk D, Kujawa R, Mamcarz A, Skrzypczak A, Wyszomirska E (1998) Induced spawning in perch, Perca fluviatilis L., using FSH + LH with pimozide or metoclopramide. Aquac Res 29:131–136CrossRefGoogle Scholar
  65. Kucharczyk D, Mamcarz A, Kujawa R, Wyszomirska E, Skrzypczak A (2000) Spontaneous and artificial spawning of perch (Perca fluviatilis L.) as studied on individuals collected from two populations. Folia Univ Agric Stetin 214(27):135–146Google Scholar
  66. Kucharczyk D, Szczerbowski A, Łuczynski MJ, Kujawa R, Mamcarz A, Wyszomirska E, Szabó T, Ratajski S (2001) Artificial spawning of Eurasian perch, Perca fluviatilis L. Using ovopel. Arch Pol Fish 9(1):39–49Google Scholar
  67. Kucharczyk D, Kujawa R, Mamcarz A, Targońska-Dietrich K, Wyszomirska E, Glogowski J, Babiak I, Szabó T (2005) Induced spawning in bream (Abramis brama L.) using pellets containing GnRH. Czech J Anim Sci 50:89–95Google Scholar
  68. Kucharczyk D, Kestemont P, Mamcarz A (2007) Artificial reproduction of pikeperch. Mercurius, Olsztyn, 80 pGoogle Scholar
  69. Kucharczyk D, Targońska K, Hliwa P, Gomułka P, Kwiatkowski M, Krejszeff S, Perkowski J (2008) Reproductive parameters of common carp (Cyprinus carpio L) spawners during natural season and out-of-season spawning. Reprod Biol 8:285–289CrossRefGoogle Scholar
  70. Kujawa R, Kucharczyk D, Mamcarz A, Zarski D, Targońska K (2011) Artificial spawning of common tench Tinca tinca (Linnaeus, 1758), obtained from wild and domestic stocks. Aquac Int 19:513–521CrossRefGoogle Scholar
  71. Legendre M, Linhart O, Billard R (1996) Spawning and management of gametes, fertilized eggs and embryos in Siluroidei. Aquat Living Resour 9:59–80CrossRefGoogle Scholar
  72. Lessman CA (1978) Effects of gonadotropin mixtures and two steroids on inducing ovulation in walleyes. Prog Fish-Cult 40:3–5CrossRefGoogle Scholar
  73. Linhart O, Rodina M, Kocour M, Gela D (2006) Insemination, fertilization and gamete management in tench, Tinca tinca (L.). Aquac Int 14:61–73CrossRefGoogle Scholar
  74. Malison JA, Procarione LS, Kayes TB, Hansen JF, Held JA (1998) Industion of out-of-season spawning in walleye (Stizostedion vitreum). Aquaculture 163:151–161CrossRefGoogle Scholar
  75. Migaud H, Mandiki R, Gardeur JN, Kestemont P, Bromage N, Fontaine P (2003) Influence of photoperiod regimes on the eurasian perch gonad genesis and spawning. Fish Physiol Biochem 28:395–397CrossRefGoogle Scholar
  76. Mims SD, Onders RJ, Gomelsky B, Shelton WL (2004) Effectiveness of the minimally invasive surgical technique (MIST) for removal of ovulated eggs from first-time and second-time mist-spawned paddlefish. N Am J Aquac 66:70–72CrossRefGoogle Scholar
  77. Minin AA, Ozerova SG (2008) Spontaneous activation of fish eggs is abolished by protease inhibitors. Russ J Dev Biol 38:293–296CrossRefGoogle Scholar
  78. Moore AA (2003) Manipulation of fertilization procedures to improve hatchery walleye egg fertility and survival. N Am J Aquac 65:56–59CrossRefGoogle Scholar
  79. Müller T, Taller J, Nyitrai G, Kucska B, Cernak I, Bercsenyi M (2004) Hybrid of pikeperch, Sander lucioperca L. and Volga perch, S. viologens (Gamelin). Aquac Res 35(9):915–916CrossRefGoogle Scholar
  80. Müller-Bellecke A, Zienert S (2008) Out-of-season spawning of pike perch (Sander lucioperca L.) without the need for hormonal treatments. Aquac Res 39:1279–1285CrossRefGoogle Scholar
  81. Mylonas CC, Fostier A, Zanuy S (2010) Broodstock management and hormonal manipulations of fish reproduction. Gen Comp Endocrinol 165:516–534CrossRefGoogle Scholar
  82. Nagahama Y (1994) Endocrine regulation of gametogenesis in fish. Int J Dev Biol 38:217–229Google Scholar
  83. Nagahama Y, Yamashita M (2008) Regulation of oocyte maturation in fish. Dev Growth Differ 50:195–219CrossRefGoogle Scholar
  84. Patino R, Sullivan CV (2002) Ovarian follicle growth, maturation, and ovulation in teleost fish. Fish Physiol Biochem 26:57–70CrossRefGoogle Scholar
  85. Patino R, Yoshizaki G, Thomas P, Kagawa H (2001) Gonadotropic control of ovarian follicle maturation: the two-stage concept and its mechanisms. Comp Biochem Physiol B129:427–439CrossRefGoogle Scholar
  86. Patino R, Yoshizaki G, Bolamba D, Thomas P (2003) Role of arachidonic acid and protein kinase c during maturation-inducing hormone-dependent meiotic resumption and ovulation in ovarian follicles of atlantic croaker. Biol Rep 68:516–523CrossRefGoogle Scholar
  87. Peter RE (1983) The brain and neurohormones in teleost reproduction. In: Randall D, Hoar WS, Donaldson E (eds) Reproduction endocrine tissues and hormones, vol 9, Part A of fish physiology. Academic, New York, pp 97–135CrossRefGoogle Scholar
  88. Peter RE, Yu KL (1997) Neuroendocrine regulation of ovulation in fishes: basic and applied aspects. Rev Fish Biol Fish 7:173–197CrossRefGoogle Scholar
  89. Podhorec P, Kouril J (2009) Induction of final oocyte maturation in Cyprinidae fish by hypothalamic factors: a review. Vet Med 54:97–110Google Scholar
  90. Policar T, Toner D, Alavi SMH, Linhart O (2008) Chapter 4: Reproduction and spawning. In: Toner D, Rougeot C (eds) Farming of Eurasian Perch volume 1–Juvenile Production, Aquaculture explained special publication no 24, Dun LaoghaireGoogle Scholar
  91. Pourasadi M, Falahatkar B, Takami GA (2009) Minimally invasive surgical technique for egg collection from the Persian sturgeon, Acipenser persicus. Aquac Int 17:317–321CrossRefGoogle Scholar
  92. Probst WN, Stoll S, Hofmann H, Fischer P, Eckmann R (2009) Spawning site selection by eurasian perch (Perca fluviatilis L.) in relation to temperature and wave exposure. Ecol Freshw Fish 18(1):1–7CrossRefGoogle Scholar
  93. Rinchard J, Dabrowski K, Tassell JJ, Stein RA (2005) Optimization of fertilization success in Sander vitreus is influenced by the sperm : egg ratio and ova storage. J Fish Biol 67:1157–1161CrossRefGoogle Scholar
  94. Rinchard J, WareK DK, Tassell JJ, Marschall EA, Stein RA (2011) Egg thiamine concentration affects embryo survival in Lake Erie walleye. Environ Biol Fish 90:53–60CrossRefGoogle Scholar
  95. Rónyai A (2007) Induced out-of-season and seasonal tank spawning and stripping of pike perch (Sander lucioperca L.). Aquac Int 38:1144–1151Google Scholar
  96. Rónyai A, Lengyel SA (2010) Effects of hormonal treatments on induced tank spawning of eurasian perch (Perca fluviatilis L.). Aquac Int 41(9):345–347Google Scholar
  97. Ross RM (1984) Catheterization: a non-harmful method of sex identification for sexually monomorphic fishes. Prog Fish-Cult 46:151–152CrossRefGoogle Scholar
  98. Rougeot C, Nicayenzi F, Mandiki SNM, Rurangwa E, Kestemont P, Mélard C (2004) Comparative study of the reproductive characteristics of XY male and hormonally sex-reversed XX male eurasian perch, Perca fluviatilis. Theriogenology 62:790–800CrossRefGoogle Scholar
  99. Saad A, Billard R (1987) Composition et emploi d’un dilueur d’insemination chez la carpe, Cyprinus carpio. Aquaculture 66:329–345CrossRefGoogle Scholar
  100. Saat T, Veersalu A (1996) The rate of early development in perch Perca fluviatilis L. and ruffe Gymnocephalus cernuus (L.) at different temperatures. Ann Bot Fenn 33:693–698Google Scholar
  101. Satterfield JR Jr, Flickinger SA (1995a) Factors influencing storage potential of preserved walleye semen. Prog Fish-Cult 57:175–181CrossRefGoogle Scholar
  102. Satterfield JR Jr, Flickinger SA (1995b) Field collection and short-term storage of walleye semen. Prog Fish-Cult 57:182–187CrossRefGoogle Scholar
  103. Schlumberger O, Proteau JP (1996) Reproduction of pikeperch (Stizostedion lucioperca) in captivity. J Appl Ichthyol 12:149–152CrossRefGoogle Scholar
  104. Schlumpberger W, Schmidt K (1980) Vorläufiger Stand der Technologie zur Aufzucht von vorgestreckten Zander (Stizostedion lucioperca). Z Binnenfisch DDR 27:284–286Google Scholar
  105. Schreck CB, Contreras-Sanchez W, Fitzpatrick MS (2001) Effects of stress on fish reproduction, gamete quality, and progeny. Aquaculture 197:3–24CrossRefGoogle Scholar
  106. Schulz RW, Renato de França L, Lareyre J-J, LeGac F, Chiarini-Garcia C, Nobrega RE, Miura T (2010) Spermatogenesis in fish. Gen Comp Endocrinol 165:390–411CrossRefGoogle Scholar
  107. Skrzypczak A, Kucharczyk D, Mamcarz A, Kujawa R, Furgala-Selezniow G (1998) A new breeding technique of pikeperch (Stizostedion lucioperca) in net cages. Czech J Anim Sci 43:398–398Google Scholar
  108. Sorensen P, Murphy C, Loomis K, Maniak P, Thomas P (2004) Evidence that 4-pregnen-17,20beta,21-triol-3-one functions as a maturation-inducing hormone and pheromonal precursor in the percid fish, Gymnocephalus cernuus. Gen Comp Endocrinol 139(1):1–11CrossRefGoogle Scholar
  109. Stacey N (2003) Hormones, pheromones and reproductive behavior. Fish Physiol Biochem 28:229–235CrossRefGoogle Scholar
  110. Steffens W, Geldhauser F, Gerstner P, Hilge V (1996) German experiences in the propagation and rearing of fingerlink pikeperch (Stizostedion lucioperca). Ann Zool Fenn 33:627–634Google Scholar
  111. Sulistyo I, Rinchard J, Fontaine P, Gardeur J, Capdeville B, Kestemont P (1998) Reproductive cycle and plasma levels of sex steroids in female eurasian perch Perca fluviatilis. Aquat Living Resour 11(2):101–110CrossRefGoogle Scholar
  112. Szczerbowski A, Kucharczyk D, Mamcarz A, Łuczyński M, Targońska K, Kujawa R (2009) Artificial off-season spawning of eurasian perch Perca fluviatilis L. Arch Pol Fish 17(2):95–98CrossRefGoogle Scholar
  113. Targońska K, Kucharczyk D, Kujawa R, Mamcarz A, Żarski D (2010) Controlled reproduction of asp, Aspius aspius (L.) using luteinizing hormone releasing hormone (LHRH) analogues with dopamine inhibitors. Aquaculture 306:407–410CrossRefGoogle Scholar
  114. Targońska K, Szczerbowski A, Żarski D, Łuczyński M, Szkudlarek M, Gomułka P, Kucharczyk D (2014) Comparison of different spawning agents in artificial out-of-season spawning of Eurasian perch, Perca fluviatilis L. Aquac Res 45:765–767Google Scholar
  115. Teletchea F, Gardeur J-N, Psenicka M, Kaspar V, Le Dore Y, Linhart O, Fontaine P (2009a) Effects of four factors on the quality of male reproductive cycle in pikeperch Sander lucioperca. Aquaculture 291(3–4):217–223CrossRefGoogle Scholar
  116. Teletchea F, Gardeur JN, Kamler E, Fontaine P (2009b) The relationship of oocyte diameter and incubation temperature to incubation time in temperate freshwater fish species. J Fish Biol 74:652–668CrossRefGoogle Scholar
  117. Thorgaard GH (1995) Biotechnological approaches to broodstock management. In: Bromage NR, Roberts RJ (eds) Broodstock management and egg and larval quality. Blackwell Science, Oxford, pp 76–93Google Scholar
  118. Tyler CR, Sumpter JP (1996) Oocyte growth and development in teleosts. Rev Fish Biol Fish 6:287–318CrossRefGoogle Scholar
  119. Vizziano D, Fostier A, Loir M, LeGac F (2008) Testis development, its hormonal regulation and spermiation induction in teleost fish. In: Alavi SMH, Cosson JJ, Coward K, Rafiee G (eds) Fish spermatology. Alpha Science, Oxford, pp 103–139Google Scholar
  120. Wang N, Gardeur JN, Henrotte E, Marie M, Kestemont P, Fontaine P (2006) Determinism of the induction of the reproductive cycle in female Eurasian perch, Perca fluviatilis: identification of environmental cues and permissive factors. Aquaculture 261:706–714CrossRefGoogle Scholar
  121. Wojda R, Sliwinski J, Ciesla M (1994) Results of studies on natural spawning in pikeperch, Stizostedion lucioperca (L.). Rocz Nauk PZW 7:71–80 (In Polish with English summary)Google Scholar
  122. Woynarovich E, Horváth L (1980) The artificial propagation of warmwater finfishes – a manual for extension. FAO Fisheries Technical Paper, Rome, Italy. (201), 183 pGoogle Scholar
  123. Woynarovich E, Woynarovich A (1980) Modified technology for elimination of stickiness of common carp Cyprinus carpio eggs. Aquacult Hung 2:19–21Google Scholar
  124. Yamashita M, Fukada S, Yoshikuni M, Bulet P, Hirai T, Yamaguchi A, Lou YH, Zhao Z, Nagahama Y (1992) Purification and characterization of maturation-promoting factor in fish. Dev Biol 149:8–15CrossRefGoogle Scholar
  125. Zakęś Z, Demska-Zakęś K (2005) Artificial spawning of pikeperch (Sander lucioperca (L.)) stimulated with human chorionic gonadotropin (hCG) and mammalian GnRH analogue with a dopamine inhibitor. Arch Pol Fish 13:63–75Google Scholar
  126. Zakęś Z, Demska–Zakęś K (2009) Controlled reproduction of pikeperch Sander lucioperca (L.): a review. Arch Pol Fish 17:153–170CrossRefGoogle Scholar
  127. Żarski D (2012) First evidence of pheromonal stimulation of maturation in Eurasian perch, Perca fluviatilis L., females. TrJFAS 12:771–776Google Scholar
  128. Żarski D, Bokor Z, Kotrik L, Urbányi B, Horváth A, Targońska K, Krejszeff S, Palińska K, Kucharczyk D (2011a) A new classification of a preovulatory oocyte maturation stage suitable for the synchronization of ovulation in controlled reproduction of Eurasian perch, Perca fluviatilis L. Reprod Biol 3:194–209CrossRefGoogle Scholar
  129. Żarski D, Palińska K, Targońska K, Bokor Z, Kotrik L, Krejszeff S, Kupren K, Horvath A, Urbanyi B, Kucharczyk D (2011b) Oocyte quality indicators in Eurasian perch, Perca fluviatilis L., during reproduction under controlled conditions. Aquaculture 313:84–91CrossRefGoogle Scholar
  130. Żarski D, Kucharczyk D, Targońska K, Palińska K, Kupren K, Fontaine P, Kestemont P (2012a) A new classification of pre-ovulatory oocyte maturation stages in pikeperch, Sander lucioperca (L.), and its application during artificial reproduction. Aquac Res 43:713–721CrossRefGoogle Scholar
  131. Żarski D, Krejszeff S, Palińska K, Targońska K, Kupren K, Fontaine P, Kestemont P, Kucharczyk D (2012b) Cortical reaction as an egg quality indicator in artificial reproduction of pikeperch, Sander lucioperca. Reprod Fertil Dev 24:843–850CrossRefGoogle Scholar
  132. Żarski D, Krejszeff S, Horváth Á, Bokor Z, Palińska K, Szentes K, Łuczyńska J, Targońska K, Kupren K, Urbányi B, Kucharczyk D (2012c) Dynamics of composition and morphology in oocytes of Eurasian perch, Perca fluviatilis L., during induced spawning. Aquaculture 364–365:103–110CrossRefGoogle Scholar
  133. Żarski D, Horvath A, Kotrik L, Targońska K, Palińska K, Krejszeff S, Bokor Z, Urbanyi B, Kucharczyk D (2012d) Effect of different activating solutions on the fertilization ability of Eurasian perch, Perca fluviatilis L., eggs. J Appl Ichthyol 28:967–972CrossRefGoogle Scholar
  134. Żarski D, Targońska K, Kaszubowski R, Kestemont P, Fontaine P, Krejszeff S, Kupren K, Kucharczyk D (2013a) Effect of different commercial spawning agents and thermal regime on the effectiveness of pikeperch, Sander lucioperca (L.), reproduction under controlled conditions. Aquac Int 21:819–828CrossRefGoogle Scholar
  135. Żarski D, Křišťan J, Palińska-Żarska K, Krejszeff S, Policar T, Kucharczyk D (2013b) The period of pikeperch, Sander lucioperca (L.), eggs ability to fertilization and its dependence on egg quality. Diversification in Inland Finfish Aquaculture II (DIFA II), 24–26 Sept, University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, VodnanyGoogle Scholar
  136. Żarski D, Horváth A, Bernáth G, Palińska-Żarska K, Krejszeff S, Müller T, Kucharczyk D (2014) Application of different activating solutions to in vitro fertilization of crucian carp, Carassius carassius (L.), eggs. Aquac Int 22:173–184CrossRefGoogle Scholar
  137. Żarski D, Targońska K, Palińska K, Kucharczyk D, Krejszeff S, Kupren K, Fontaine P, Kestemont P (2015a) The application of tannic acid to the elimination of egg stickiness at varied moments of the egg swelling process in pikeperch, Sander lucioperca (L.). Aquac Res 46:324–334Google Scholar
  138. Żarski D, Cejko BI, Krejszeff S, Palińska-Zarska K, Horváth Á, Sarosiek B, Judycka S, Kowalski RK, Łaczyńska B, Kucharczyk D (2015b) The effect of osmolality on egg fertilization in common carp, Cyprinus carpio Linnaeus, 1758. J Appl Ichthyol 31:159–163Google Scholar
  139. Zohar Y, Mylonas CC (2001) Endocrine manipulations of spawning in cultured fish: from hormones to genes. Aquaculture 197:99–136CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • D. Żarski
    • 1
    Email author
  • A. Horváth
    • 2
  • J. A. Held
    • 3
  • D. Kucharczyk
    • 1
  1. 1.Department of Lake and River FisheriesUniversity of Warmia and MazuryOlsztynPoland
  2. 2.Department of AquacultureSzent István UniversityGödöllőHungary
  3. 3.University of Wisconsin-Extension MadisonMadisonUSA

Personalised recommendations