Skip to main content

Domestication and Responses to Stress

  • Chapter
Biology and Culture of Percid Fishes

Abstract

Domestication is a process by which animals become adapted to captive life conditions by way of natural and/or artificial selection. Genetic drift and inbreeding may also contribute to the evolution (deleterious or not) of numerous traits during domestication. In fish, domestication has been shown to influence growth, behavior (aggressiveness, dominance, alertness, feeding) and stress responsiveness. With respect to the later, it seems that stress-resistant animals may be selected during domestication as a result of an improved fitness. In percid species, some studies already investigated the effects of several husbandry stressors (chronic confinement, repeated water emersion, single and repeated hypoxia) on the physiological and immune responses along domestication process, by comparing Eurasian perch juveniles from distinct generation levels (Filial 1–5). Under chronic confinement, domestication resulted in a reduction in cellular (HSP70) and physiological (subsequent handling stress) stress response as well as the maintenance of immune status (no decrease in transferrin, complement C3 levels in Filial 4 fish). Domestication did not influence physiological and immune responses to repeated emersion stressor and repeated hypoxia. Eurasian perch has however been shown to be responsive to hypoxic conditions (hyperglycemia, spleen contractions, high transferrin level) and to potentially develop some acclimation mechanism to the repeated disturbance at the expense of some immune functions. All together, the studies demonstrated that domestication positively influenced fish tolerance to chronic confinement but not to hypoxia or water emersion and that this might be linked to the stressor severity. Moreover, F4/F5 fish groups displayed a better immune and physiological status than their F1 counterparts. A microsatellite analysis however revealed that these F4/F5 generations display a lower genetic diversity. Thus, loss of genetic diversity did not appear detrimental to the fish but will nevertheless limit the possibilities of genetic improvement in upcoming generations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acerete L, Balasch JC, Espinosa E, Josa A, Tort L (2004) Physiological responses in Eurasian perch (Perca fluviatilis, L.) subjected to stress by transport and handling. Aquaculture 237:167–178

    Article  CAS  Google Scholar 

  • Alvarez D, Nicieza G (2003) Predator avoidance behaviour in wild and hatchery-reared brown trout: the role of experience and domestication. J Fish Biol 63:1565–1577

    Article  Google Scholar 

  • Ashley PJ (2007) Fish welfare: current issues in aquaculture. Appl Anim Behav Sci 104:199–235

    Article  Google Scholar 

  • Awata S, Tsuruta T, Yada T, Iguchi K (2011) Effects of suspended sediment on cortisol levels in wild and cultures strains of ayu Plecoglossus altivelis. Aquaculture 314:115–121

    Article  CAS  Google Scholar 

  • Barton BA (2002) Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integr Comp Biol 42:517–252

    Article  CAS  Google Scholar 

  • Basu N, Tosgham AE, Ackerman PA, Bibeau MR, Nakano K, Schulte PM, Iwama GK (2002) Heat shock protein genes and their functional significance in fish. Gene 295:173–183

    Article  CAS  Google Scholar 

  • Begout-Anras ML, Lagardere JP (2004) Domestication et comportement chez les poissons téléostéens. INRA Prod Anim 17:211–215

    Google Scholar 

  • Berejikian BA (1995) The effects of hatchery and wild ancestry and experience on the relative ability of steelhead trout fry (Oncorhynchus mykiss) to avoid a benthic predator. Can J Fish Aquat Sci 52:2476–2482

    Article  Google Scholar 

  • Billard R (1999) Carp: biology and culture, Praxis series in aquaculture and fisheries. Springer, London

    Google Scholar 

  • Blonk RJW, Komen J, Kamstra A, Crooijmans RPMA, van Arendonk JAM (2009) Levels of inbreeding in group mating captive broodstock populations of common sole, (Solea solea), inferred from parental relatedness and contribution. Aquaculture 289:26–31

    Article  Google Scholar 

  • Bowman J, Kidd AG, Gorman RM, Schulte-Hostedde AI (2007) Assessing the potential for impacts by feral mink on wild mink in Canada. Biol Conserv 139:12–18

    Article  Google Scholar 

  • Devlin RH, Sakhrani D, Tymchuk WE, Rise ML, Goh B (2009) Domestication and growth hormone transgenesis cause similar changes in gene expression in coho salmon (Oncorhynchus kisutch). Proc Natl Acad Sci U S A 106:3047–3052

    Article  CAS  Google Scholar 

  • Ditlecadet D, Dufresne F, Le François NR, Blier PU (2006) Applying microsatellites in two commercial strains of arctic charr (Salvelinus alpinus): potential for a selective breeding program. Aquaculture 257:37–43

    Article  CAS  Google Scholar 

  • Dixon TJ, Coman GJ, Arnold SJ, Sellars MJ, Lyons RE, Dierens L, Preston NP, Li Y (2008) Shifts in genetic diversity during domestication of Black Tiger shrimp, Penaeus monodon, monitored using two multiplexed microsatellite systems. Aquaculture 283:1–6

    Article  CAS  Google Scholar 

  • Douxfils J, Mandiki SNM, Marotte G, Wang N, Silvestre F, Milla S, Henrotte E, Vandecan M, Rougeot C, Kestemont P (2011a) Does domestication process affect stress response in juvenile Eurasian perch Perca fluviatilis? Comp Biochem Physiol A Mol Integr physiol 159:92–99

    Article  CAS  Google Scholar 

  • Douxfils J, Mathieu C, Mandiki SNM, Milla S, Henrotte E, Wang N, Vandecan M, Dieu M, Dauchot N, Pigneur LM, Li X, Rougeot C, Mélard C, Silvestre F, Van Doninck K, Raes M, Kestemont P (2011b) Physiological and proteomic evidences that domestication process differentially modulates the immune status of juvenile Eurasian perch (Perca fluviatilis) under chronic confinement stress. Fish Shellfish Immunol 31:1113–1121

    Article  CAS  Google Scholar 

  • Douxfils J, Deprez M, Mandiki SNM, Milla S, Henrotte E, Mathieu C, Silvestre F, Vandecan M, Rougeot C, Mélard C, Dieu M, Raes M, Kestemont P (2012) Physiological and proteomic responses to single and repeated hypoxia in juvenile Eurasian perch under domestication – clues to physiological acclimation and humoral immune modulations. Fish Shellfish Immunol 33:1112–1122

    Article  CAS  Google Scholar 

  • Douxfils J, Lambert S, Mathieu C, Milla S, Mandiki SNM, Henrotte H, Wang N, Dieu M, Raes M, Rougeot C, Kestemont P (2014) Influence of domestication process on immune response to repeated emersion stressors in Eurasian perch (Perca fluviatilis, L.). Comp Biochem Physiol A Mol Integr Physiol 173:52–60

    Google Scholar 

  • Driscoll CA, MacDonald DW, O’Brien SJ (2009) From wild animals to domestic pets, an evolutionary view of domestication. From the academy – in the light of evolution III: two centuries of Darwin Sackler colloquium. Proc Natl Acad Sci U S A 106:9971–9978

    Article  CAS  Google Scholar 

  • Fleming I, Agustesson T, Finstad B, Johnsson J, Bjornsson B (2002) Effects of domestication on growth physiology and endocrinology of Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 59:1323–1330

    Article  CAS  Google Scholar 

  • Fontaine P, Le Bail PY (2004) Domestication et croissance chez les poissons. INRA Prod Anim 17:217–225

    Google Scholar 

  • Fox CH, Reed DH (2011) Inbreeding depression increases with environmental stress: an experimental study and meta-analysis. Evolution 65:246–258

    Article  Google Scholar 

  • Grad I, Picard D (2007) The glucocorticoid responses are shaped by molecular chaperones. Mol Cell Endocrinol 275:2–12

    Article  CAS  Google Scholar 

  • Haffray P, Pincent C, Rault P, Coudurier B (2004) Domestication et amelioration génétique des cheptels piscicoles français dans le cadre du SYSAAF. INRA Prod Anim 17:243–252

    Google Scholar 

  • Horreo JL, Machado-Schiaffino G, Griffiths A, Bright D, Stevens J, Garcia-Vazquez E (2008) Identification of differential broodstock contribution affecting genetic variability in hatchery stocks of Atlantic salmon (Salmo salar). Aquaculture 280:89–93

    Article  Google Scholar 

  • Huntingford FA (2004) Implications of domestication and rearing conditions for the behavior of cultivated fishes. J Fish Biol 65:122–142

    Article  Google Scholar 

  • Johnsson JI, Abrahams MV (1991) Interbreeding with domestic strain increases foraging under threat of predation in juvenile steelhead trout (Oncorhynchus mykiss): an experimental study. Can J Fish Aquat Sci 48:243–247

    Article  Google Scholar 

  • Johnsson J, Höjesjö J, Fleming I (2001) Behavioural and heart rate responses to predation risk in wild and domesticated Atlantic salmon. Can J Fish Aquat Sci 58:788–794

    Article  Google Scholar 

  • Kang JA, Noh JK, Kim JH, Lee JH, Kim HC, Kim KK, Kim BS, Lee WJ (2006) Genetic relationship between broodstocks of olive flounder, Paralichthys olivaceus (Temminck and Schlegel) using microsatellite markers. Aquac Res 37:701–707

    Article  CAS  Google Scholar 

  • Kültz D (2005) Molecular and evolutionary basis of the cellular stress response. Ann Rev Physiol 67:225–257

    Article  Google Scholar 

  • Kunzl C, Kaiser S, Meier E, Sachser N (2003) Is a wild mammal kept and reared in captivity still a wild animal? Horm Behav 43:187–196

    Article  Google Scholar 

  • Mairesse G, Thomas M, Gardeur JN, Brun-Bellut J (2007) Effects of dietary factors, stocking biomass and domestication on the nutritional and technological quality of the Eurasian perch Perca fluviatilis. Aquaculture 262:86–94

    Article  Google Scholar 

  • Matsuzaki SS, Mabuchi K, Takamura N, Nishida M, Washitani I (2009) Behavioral and morphological differences between feral and domesticated strains of common carp Cyprinus carpio. J Fish Biol 75:1206–1220

    Article  CAS  Google Scholar 

  • McGinnity P, Prodohl P, Ferguson A, Hynes R, O’Maoiléidigh N, Baker N, Cotter D, O’Hea B, Cooke D, Rogan G, Taggart J, Cross T (2003) Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salmo salar, as a result of interactions with escaped farm salmon. Proc R Soc Lond 270:2443–2450

    Article  Google Scholar 

  • Mignon-Grasteau S, Boissy A, Bouix J, Faure JM, Fisher AD, Hinch GN, Jensen P, Le Neindre P, Mormède P, Prunet P, Vandeputte M, Beaumont C (2005) Genetics of adaptation and domestication in livestock. Livest Prod Sci 93:3–14

    Article  Google Scholar 

  • Milla S, Mathieu M, Wang N, Lambert S, Nadzialek S, Massart S, Henrotte E, Douxfils J, Mélard C, Mandiki SNM, Kestemont P (2010) Spleen immune status is affected after acute handling stress but not regulated by cortisol in Eurasian perch, Perca fluviatilis. Fish Shellfish Immunol 28:931–941

    Article  CAS  Google Scholar 

  • Millot S, Péan S, Leguay D, Vergnet A, Chatain B, Bégout ML (2010) Evaluation of behavioural changes induced by a first step of domestication or selection for growth in the European sea bass (Dicentrarchus labrax): a self-feeding approach under repeated acute stress. Aquaculture 306:211–217

    Article  Google Scholar 

  • Mormede P, Andanson S, Aupérin B, Beerda B, Guéméné D, Malmkvist J, Manteca X, Manteuffel G, Prunet P, Van Reenen CG, Richard S, Veissier I (2007) Exploration of the hypothalamic-pituitary-adrenal function as a tool to evaluate fish welfare. Physiol Behav 92:317–339

    Article  CAS  Google Scholar 

  • Norris AT, Bradley DG, Cunningham EP (1999) Microsatellite genetic variation between and within farmed and wild Atlantic salmon (Salmon salar) populations. Aquaculture 180:247–264

    Article  Google Scholar 

  • Ouborg NJ, Angeloni F, Vergeer P (2010) An essay on the necessity and feasibility of conservation genomics. Conserv Genet 11:643–653

    Article  Google Scholar 

  • Pampoulie C, Jorundsdottir TD, Steinarsson A, Petursdottir G, Stefansson MO, Danielsdottir AK (2006) Genetic comparison of experimental farmed strains and wild Icelandic populations of Atlantic cod (Gadus morhua L.). Aquaculture 261:556–564

    Article  CAS  Google Scholar 

  • Pearsons TN, Fritts AL, Scott JL (2007) The effects of hatchery domestication on competitive dominance of juvenile spring Chinook salmon (Oncorhynchus tshawytscha). Can J Fish Aquat Sci 64:803–812

    Article  Google Scholar 

  • Pottinger TG, Carrick TR (1999) Modification of the plasma cortisol response to stress in rainbow trout by selective breeding. Gen Comp Endocrinol 116:122–132

    Article  CAS  Google Scholar 

  • Price EO (1999) Behavioral development in animals undergoing domestication. Appl Anim Behav Sci 65:245–271

    Article  Google Scholar 

  • Pruett BP (2003) Stress and the immune system. Pathophysiology 9:133–153

    Article  CAS  Google Scholar 

  • Reinhardt UG (2001) Selection for surface feeding in farmed and sea-ranched masu salmon juveniles. Trans Am Fish Soc 130:155–158

    Article  Google Scholar 

  • Rimoldi S, Terova G, Ceccuzzi P, Marelli S, Antonini M, Saroglia M (2012) HIF-1α mRNA levels in Eurasian perch (Perca fluviatilis) exposed to acute and chronic hypoxia. Mol Biol Rep 39:4009–4015

    Article  CAS  Google Scholar 

  • Rotllant J, Pavlidis M, Kentouri M, Abad ME, Tort L (1997) Non-specific immune responses in the red porgy Pagrus pagrus after crowding stress. Aquaculture 156:279–290

    Article  Google Scholar 

  • Rougeot C, Berviller E, Prignon C, Gustin D, Vandecan M, Mélard C (2007) Growth improvement of Eurasian perch using domesticated strains under intensive rearing conditions. Aquaculture 272:s306

    Google Scholar 

  • Segner H, Sundh H, Buchmann K, Douxfils J, Sundell KS, Mathieu C, Ruane N, Jutfelt F, Toften H, Vaughan L (2012) Health of farmed fish: its relation to fish welfare and its utility as welfare indicator. Fish Physiol Biochem 38:85–105

    Article  CAS  Google Scholar 

  • Teletchea F, Fontaine P (2014) What is a domesticated fish? Implications for the sustainable future of aquaculture. Fish Fish. doi:10.1111/faf.12006

    Google Scholar 

  • Tort L (2011) Stress and immune modulation in fish. Dev Comp Immunol 35:1366–1375

    Article  CAS  Google Scholar 

  • Tymchuk W, Beckman B, Devlin R (2009) Altered expression of growth hormone/insulin-like growth factor I axis hormones in domesticated fish. Endocrinology 150:1809–1816

    Article  CAS  Google Scholar 

  • Vandeputte M, Launey S (2004) Quelle gestion génétique de la domestication chez les poissons? INRA Prod Anim 17:237–242

    Google Scholar 

  • Vandeputte M, Prunet P (2002) Génétique et adaptation chez les poissons: domestication, résistance au stress et adaptation aux conditions de milieu. INRA Prod Anim 15:365–371

    Google Scholar 

  • Verbeek P, Iwamoto T, Murakami N (2008) Variable stress-responsiveness in wild and domesticated fighting fish. Physiol Behav 93:83–88

    Article  CAS  Google Scholar 

  • Welker TL, Mcnulty ST, Klesius PH (2007) Effect of sublethal hypoxia on the immune response and susceptibility of channel catfish, Ictalurus punctatus, to enteric septicemia. J World Aquac Soc 38:12–23

    Article  Google Scholar 

  • Yamamoto T, Reinhardt UG (2003) Dominance and predator avoidance in domesticated and wild masu salmon Oncorhynchus masou. Fish Sci 69:88–94

    Article  CAS  Google Scholar 

  • Zuberi A, Ali S, Brown C (2011) A non-invasive assay for monitoring stress responses: a comparison between wild and captive-reared rainbowfish (Melanoteania duboulayi). Aquaculture 321:267–272

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Douxfils .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Douxfils, J., Mandiki, S.N.M., Mathieu, C., Milla, S., Kestemont, P. (2015). Domestication and Responses to Stress. In: Kestemont, P., Dabrowski, K., Summerfelt, R. (eds) Biology and Culture of Percid Fishes. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7227-3_29

Download citation

Publish with us

Policies and ethics