Skip to main content

Comparative Genetic Diversity, Population Structure, and Adaptations of Walleye and Yellow Perch Across North America

  • Chapter
Biology and Culture of Percid Fishes

Abstract

The yellow perch Perca flavescens and the walleye Sander vitreus are native North American percid fishes, which have considerable fishery and ecological importance across their wide geographic ranges. Over the past century, they were stocked into new habitats, often with relative disregard for conserving local genetic adaptations. This chapter focuses on their comparative population structure and genetic diversity in relationship to historical patterns, habitat connectivity, dispersal ability, distributional abundances, and reproductive behavior. Both species possess considerable genetic structure across their native ranges, exhibiting similar patterning of discontinuities among geographic regions. The two species significantly differ in levels of genetic diversity, with walleye populations possessing overall higher genetic variability than yellow perch. Genetic divergence patterns follow the opposite trend, with more pronounced differences occurring among closely spaced spawning aggregations of yellow perch than walleye. Results reveal broad-scale correspondence to isolation by geographic distance, however, their fine-scale population structures show less relationship, often with pronounced genetic differences among some nearby reproductive groups. Genetic composition of spawning groups is stable from year to year in walleye, according to two decades of data, and is less consistent in yellow perch. These patterns appear to reflect fundamental behavioral differences between the two species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aalto SK, Newsome (1990) Additional evidence supporting demic behavior of a yellow perch (Perca flavescens) population. Can J Fish Aquat Sci 47:1959–1962

    Article  Google Scholar 

  • Aldenhoven JT, Miller MA, Corneli PS, Shapiro MD (2010) Phylogeography of ninespine sticklebacks. Ecology 19:4061–4076

    CAS  Google Scholar 

  • Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nat Rev Genet 11:697–710

    Article  CAS  Google Scholar 

  • Araújo MB, Rahbek C (2006) How does climate change affect biodiversity? Science 313:1396–1397

    Article  Google Scholar 

  • Avise JC (2004) Molecular markers, natural history, and evolution, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Avise J (2010) Conservation genetics enters the genomics era. Conserv Genet 11:665–669

    Article  Google Scholar 

  • Azizishirazi A, Dew WA, Forsyth HL, Pyle GG (2013) Olfactory recovery of wild yellow perch from metal contaminated lakes. Ecotoxicol Environ Saf 88:42–47

    Article  CAS  Google Scholar 

  • Backhouse-James SM, Docker MF (2012) Microsatellite and mitochondrial DNA markers show no evidence of population structure in walleye (Sander vitreus) in Lake Winnipeg. J Great Lakes Res 38:47–57

    Article  Google Scholar 

  • Bailey RM, Smith GR (1981) Origin and geography of the fish fauna of the Laurentian Great Lakes basin. Can J Fish Aquat Sci 38:1539–1561

    Article  Google Scholar 

  • Barton BA, Barry TP (2011) Reproduction and environmental biology. In: Barton BA (ed) Biology, management, and culture of walleye and sauger. American Fisheries Society, Bethesda, pp 199–231

    Google Scholar 

  • Behrmann–Gödel J, Gerlach G (2008) First evidence for postzygotic reproductive isolation between two populations of Eurasian perch (Perca fluviatilis L.) within Lake Constance. Front Zool 5:1–7

    Article  Google Scholar 

  • Behrmann-Godel J, Gerlach G, Eckmann R (2006) Kin and population recognition in sympatric Lake Constance perch (Perca fluviatilis L.): can assortative shoaling drive population divergence? Behav Ecol Sociobiol 59:461–468

    Article  Google Scholar 

  • Bélanger-Deschênes S, Couture P, Campbell PG, Bernatchez L (2013) Evolutionary change driven by metal exposure as revealed by coding SNP genome scan in wild yellow perch (Perca flavescens). Ecotoxicology 22:938–957

    Article  CAS  Google Scholar 

  • Beletsky D, Mason DM, Schwab DJ, Rutherford ES, Janssen J, Clapp DF, Dettmers JM (2007) Biophysical model of larval yellow perch advection and settlement in Lake Michigan. J Great Lakes Res 33:842–866

    Article  Google Scholar 

  • Bergek S, Björklund M (2007) Cryptic barriers to dispersal within a lake allow genetic differentiation of Eurasian perch. Evolution 61:2035–2041

    Article  CAS  Google Scholar 

  • Bergek S, Sundblad G, Björklund M (2010) Population differentiation in perch Perca fluviatilis: environmental effects on gene flow? J Fish Biol 76:1159–1172

    Article  CAS  Google Scholar 

  • Bernatchez L (1997) Mitochondrial DNA analysis confirms the existence of two glacial races of rainbow smelt Osmerus mordax and their reproductive isolation in the St Lawrence River estuary (Quebec, Canada). Mol Ecol 6:73–83

    Article  CAS  Google Scholar 

  • Billington N (1993) Genetic variation in Lake Erie yellow perch (Perca flavescens) demonstrated by mitochondrial DNA analysis. J Fish Biol 43:941–943

    CAS  Google Scholar 

  • Billington N (1996) Geographical distribution of mitochondrial DNA (mtDNA) variation in walleye, sauger, and yellow perch. Ann Zool Fenn 33:699–706

    Google Scholar 

  • Billington N, Maceina MJ (1997) Genetic and population characteristics of walleyes in the Mobile drainage of Alabama. Trans Am Fish Soc 126:804–814

    Article  Google Scholar 

  • Billington N, Strange RM (1995) Mitochondrial DNA analysis confirms the existence of a genetically divergent walleye population in northeastern Mississippi. Trans Am Fish Soc 124:770–776

    Article  CAS  Google Scholar 

  • Billington N, Barrette RJ, Hebert PDN (1992) Management implications of mitochondrial DNA variation in walleye stocks. N Am J Fish Manag 12:276–284

    Article  Google Scholar 

  • Blazer VS, Pinkney AE, Jenkins JA, Iwanowicz LR, Minkkinen S, Draugelis-Dale RO, Uphoff JH (2013) Reproductive health of yellow perch Perca flavescens in selected tributaries of the Chesapeake Bay. Sci Total Environ 447:198–209

    Article  CAS  Google Scholar 

  • Bodaly RA, Ward RD, Mills CA (1989) A genetic stock study of perch, Perca fluviatilis L., in Windermere. J Fish Biol 34:965–967

    Article  Google Scholar 

  • Bolsenga SJ, Herdendorf CE (1993) Lake Erie and Lake St. Clair handbook. Wayne State University Press, Detroit

    Google Scholar 

  • Borer S, Miller LM, Kapuscinski AR (1999) Microsatellites in walleye Stizostedion vitreum. Mol Ecol 8:336–338

    CAS  Google Scholar 

  • Boschung HT, Mayden RL (2004) Fishes of Alabama. Smithsonian Institution, Washington, DC

    Google Scholar 

  • Bougas B, Normandeau E, Pierron F, Campbell PGC, Bernatchez L, Couture P (2013) How does exposure to nickel and cadmium affect the transcriptome of yellow perch (Perca flavescens) – results from a 1000 candidate-gene microarray. Aquat Toxicol 142–143C:355–364

    Article  CAS  Google Scholar 

  • Bozek MA, Baccante DA, Lester NP (2011a) Walleye and sauger life history. In: Barton BA (ed) Biology, management, and culture of walleye and sauger. American Fisheries Society, Bethesda, pp 233–301

    Google Scholar 

  • Bozek MA, Haxton TJ, Raabe JK (2011b) Walleye and sauger habitat. In: Barton BA (ed) Biology, management, and culture of walleye and sauger. American Fisheries Society, Bethesda, pp 133–198

    Google Scholar 

  • Campbell RR (1987) Status of the blue walleye, Stizostedion vitreum glaucum, in Canada. Can Field Nat 101:245–252

    Google Scholar 

  • Carey JR, Judge DS (2000) Longevity records: life spans of mammals, birds, amphibians, reptiles, and fish. Odense University Press, Odense

    Google Scholar 

  • Carlander KD (1997) Handbook of freshwater fishery biology, vol. 3: life history data on ichthyopercid and percid fishes of the United States and Canada. Iowa State University Press, Ames

    Google Scholar 

  • Cena CJ, Morgan GE, Malette MD, Heath DD (2006) Inbreeding, outbreeding and environmental genetic diversity in 46 walleye (Sander vitreus) populations. Mol Ecol 15:303–320

    Article  CAS  Google Scholar 

  • Clady MD (1977) Distribution and relative exploitation of yellow perch tagged on spawning grounds in Oneida Lake. NY Fish Game J 24:46–52

    Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660. Available at http://darwin.uvigo.es/software/tcs.html

    Article  CAS  Google Scholar 

  • Colby PJ, McNicol RE, Ryder RA (1979) Synopsis of biological data on the walleye Stizostedion v. vitreum, vol 119, FAO fisheries synopsis. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Colby PJ, Lewis CA, Eschenroder RL, Haas RC, Hushak LJ (1994) Walleye- rehabilitation guidelines for the Great Lakes area. Great Lakes Fishery Commission, technical report, Ann Arbor

    Google Scholar 

  • Collette BB, Ali MA, Hokanson KEF, Nagiec M, Smirnov SA, Thorpe JE, Weatherly AH, Willemsen J (1977) Biology of the percids. J Fish Res Board Can 34:1891–1899

    Google Scholar 

  • Coulon A, Fitzpatrick JW, Bowman R, Lovette IJ (2012) Mind the gap: genetic distance increases with habitat gap size in Florida scrub jays. Biol Lett 8:582–585

    Article  Google Scholar 

  • Craig JF (1987) The biology of perch and related fish. Croom Helm, London

    Google Scholar 

  • Craig JF (2000) Percid fishes systematics, ecology, and exploitation. Blackwell Science, Oxford

    Book  Google Scholar 

  • Crossman EJ, McAllister DE (1986) Zoogeography of freshwater fishes of the Hudson Bay Drainage, Ungava Bay and the Arctic Archipelago. In: Hocutt CH, Wiley EO (eds) The zoogeography of North American freshwater fishes. Wiley, New York, pp 53–104

    Google Scholar 

  • Darriba D, Taboada GL, Doallom R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772. Available at http://code.google.com/p/jmodeltest2/

    Article  CAS  Google Scholar 

  • Davis MB, Shaw RG (2001) Range shifts and adaptive responses to quaternary climate change. Science 292:673–679

    Article  CAS  Google Scholar 

  • Demandt MH (2010) Temporal changes in genetic diversity of isolated populations of perch and roach. Conserv Genet 11:249–255

    Article  Google Scholar 

  • Dembkowski DJ, Chipps SR, Blackwell BG (2013) Response of walleye and yellow perch to water-level fluctuations in glacial lakes. Fish Manag Ecol. doi:10.1111/fme.12047

    Google Scholar 

  • DeWoody JA, Avise JC (2000) Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J Fish Biol 56:461–473

    Article  CAS  Google Scholar 

  • Diekmann OE, Serrão EA (2012) Range-edge genetic diversity: locally poor extant southern patches maintain a regionally diverse hotspot in the seagrass Zostera marina. Mol Ecol 7:1647–1657

    Article  Google Scholar 

  • Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973. Available at http://beast2.org

    Article  CAS  Google Scholar 

  • Dumont P (1996) Comparaison de la dynamique des populations de perchaudes (Perca flavescens) soumises a des niveaux differents de stress anthropique. Ministere de l’Environmement et de la Faune, Service de l’amenagemetn et de l’exploitation de la faune. Report technique 06–46, Montreal

    Google Scholar 

  • Dupont PP, Bourret V, Bernatchez L (2007) Interplay between ecological, behavioural and historical factors in shaping the genetic structure of sympatric walleye populations (Sander vitreus). Mol Ecol 26:937–951

    Google Scholar 

  • Eldridge WH, Bacigalupi MD, Adelman IR, Miller LM, Kapuscinski AR (2002) Determination of relative survival of two stocked walleye populations and resident natural-origin fish by microsatellite DNA parentage assignment. Can J Fish Aquat Sci 59:282–290

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  Google Scholar 

  • Excoffier L, Lischer HE (2010) ARLEQUIN suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. Available at http://cmpg.unibe.ch/software/arlequin35/

    Article  Google Scholar 

  • Faber JE, Stepien CA (1997) The utility of mitochondrial DNA control region sequences for analyzing phylogenetic relationships among populations, species, and genera of the Percidae. In: Kocher TD, Stepien CA (eds) Molecular systematics of fishes. Academic, London, pp 129–144

    Chapter  Google Scholar 

  • Ferguson RG, Derkson AJ (1971) Migrations of adult and juvenile walleyes (Stizostedion vitreum vitreum) in southern Lake Huron, Lake St. Clair, Lake Erie, and connecting waters. J Fish Res Board Can 8:1133–1142

    Article  Google Scholar 

  • Ferguson MM, Duckworth GA (1997) The status and distribution of lake sturgeon, Ascipenser fulvescens, in the Canadian provinces of Manitoba, Ontario and Quebec: a genetic perspective. Environ Biol Fishes 48:299–309

    Article  Google Scholar 

  • Fielder DG (2002) Sources of walleye recruitment in Saginaw Bay, Lake Huron. N Am J Fish Manag 22:1032–1040

    Article  Google Scholar 

  • Franckowiak RP, Sloss BL, Bozek MA, Newman SP (2009) Temporal effective size estimates of a managed walleye Sander vitreus population and implications for genetic-based management. J Fish Biol 74:1086–1103

    Article  CAS  Google Scholar 

  • Fulford RS, Rice JA, Miller TJ, Binkowski FP, Dettmers JM, Belonger B (2006) Foraging selectivity by larval yellow perch (Perca flavescens): implications for understanding recruitment in small and large lakes. Can J Fish Aquat Sci 63:28–42

    Article  Google Scholar 

  • Garner SR, Bobrowicz SM, Wilson CC (2013) Genetic and ecological assessment of population rehabilitation: walleye in Lake Superior. Ecol Appl 23:594–605

    Article  Google Scholar 

  • Gatt MH, Fraser DJ, Liskauskas AP, Ferguson MM (2002) Mitochondrial DNA variation and stock structure of walleye from eastern Lake Huron: an analysis of contemporary and historical samples. Trans Am Fish Soc 131:99–108

    Article  Google Scholar 

  • Gerlach G, Schardt U, Eckmann R, Meyer A (2001) Kin–structured subpopulations in Eurasian perch (Perca fluviatilis L.). Heredity 86:213–221

    Article  CAS  Google Scholar 

  • Glaubitz JC (2004) CONVERT: a user–friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol Ecol Notes 4:309–310. http://www.agriculture.purdue.edu/fnr/html/faculty/rhodes/students%20and%20staff/glaubitz/software.htm

    Article  CAS  Google Scholar 

  • GLFC (Great Lakes Fishery Commission) (2011) Strategic vision of the Great Lakes Fishery Commission 2011–2020. Great Lakes Fishery Commission, special publication, Ann Arbor. Available at http://www.glfc.org/pubs/SpecialPubs/StrategicVision2012.pdf

  • Goudet J (1995) Fstat version 1.2: a computer program to calculate Fstatistics. J Hered 86:485–486

    Google Scholar 

  • Goudet J (2002) Fstat version 2.9.3.2. Available at http://www2.unil.ch/popgen/softwares/fstat.htm

  • Griffiths D (2010) Pattern and process in the distribution of North American freshwater fish. Biol J Linn Soc 100:46–61

    Article  Google Scholar 

  • Grzybowski M, Sepulveda-Villet OJ, Stepien CA, Rosauer D, Binkowski F, Klaper R, Shepherd BS, Goetz F (2010) Genetic variation of 17 wild yellow perch populations from the Midwest and east coast analyzed via microsatellites. Trans Am Fish Soc 139:270–287

    Article  CAS  Google Scholar 

  • Guinand B, Scribner KT, Page KS, Burnham-Curtis MK (2003) Genetic variation over space and time: analyses of extinct and remnant lake trout populations in the Upper Great Lakes. Proc R Soc Lond B 270:425–433

    Article  CAS  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New Algorithms and methods to estimate maximum–likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. Available at http://www.atgc-montpellier.fr/phyml/

    Article  CAS  Google Scholar 

  • Gyllensten ULF, Ryman N, Ståhl G (1985) Monomorphism of allozymes in perch (Perca fluviatilis L.). Hereditas 102:57–61

    Article  Google Scholar 

  • Haas RC, Bryant WC, Smith KD, Nuhfer AJ (1985) Movement and harvest of fish in Lake St. Clair, St. Clair River, and Detroit River. Final Report Winter Navigation Study U.S. Army Corps of Engineers

    Google Scholar 

  • Hackney PA, Holbrook JA (1978) Sauger, walleye, and yellow perch in the southeastern United States. Am Fish Soc Spec Pub 11:74–81

    Google Scholar 

  • Hampe A, Jump AS (2011) Climate relicts: past, present, future. Ann Rev Ecol Evol Syst 42:313–333

    Article  Google Scholar 

  • Hampe A, Petit R (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467

    Article  Google Scholar 

  • Haponski AE, Stepien CA (2013) Phylogenetic and biogeographic relationships of the Sander pikeperches (Perciformes: Percidae): patterns across North America and Eurasia. Biol J Linn Soc 110:156–179

    Article  Google Scholar 

  • Haponski AE, Stepien CA (2014a) A population genetic window in the past and future of the walleye Sander vitreus: relation to historic walleye and the extinct blue pike S. v. “glaucus”. BMC Evol Biol 14:133

    Article  Google Scholar 

  • Haponski AE, Stepien CA (2014b) Genetic connectivity and diversity of walleye (Sander vitreus) spawning groups in the Huron–Erie corridor. J Great Lakes Res 40:89–100

    Google Scholar 

  • Haponski AE, Bollin TL, Jedlicka MA, Stepien CA (2009) Landscape genetic patterns of the rainbow darter Etheostoma caeruleum: a catchment analysis of mitochondrial DNA sequences and nuclear microsatellites. J Fish Biol 75:2244–2268

    Article  CAS  Google Scholar 

  • Haponski AE, Dean H, Blake BE, Stepien CA (2014) Genetic history of walleye (Sander vitreus) spawning in Lake Erie’s Cattaraugus Creek: a comparison of pre- and post-stocking. Trans Am Fish Soc. 143:1295–1307

    Google Scholar 

  • Harris LN, Taylor EB (2010) Pleistocene glaciations and contemporary genetic diversity in a Beringian fish, the broad whitefish, Coregonus nasus (Pallas): inferences from microsatellite DNA variation. J Evol Biol 23:72–86

    Article  CAS  Google Scholar 

  • Hayhoe K, VanDorn J, Croley T, Schlegal N, Wuebbles D (2010) Regional climate change projections for Chicago and the US Great Lakes. J Great Lakes Res 36:7–21

    Article  Google Scholar 

  • Helfman G (1984) School fidelity in fishes: the yellow perch pattern. Anim Behav 32:663–672

    Article  Google Scholar 

  • Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68:87–112

    Article  Google Scholar 

  • Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Phil Trans R Soc B 359:183–195

    Article  CAS  Google Scholar 

  • Hill DK, Magnuson JJ (1990) Potential effects of global climate warming on the growth and prey consumption of Great Lakes fish. Trans Am Fish Soc 119:265–275

    Article  Google Scholar 

  • Hoagstrom CW, Berry CR (2010) The native range of walleyes in the Missouri River drainage. N Am J Fish Manag 30:642–654

    Article  Google Scholar 

  • Hoff MH (2002) A rehabilitation plan for walleye populations and habitats in Lake Superior, Great Lakes Fishery Commission miscellaneous publication 2003-01. Great Lakes Fishery Commission, Ann Arbor

    Google Scholar 

  • Horrall RM (1981) Behavioral stock-isolating mechanisms in Great Lakes fishes with special reference to homing and site imprinting. Can J Fish Aquat Sci 38:1481–1496

    Article  Google Scholar 

  • Hubbs CL (1926) A check–list of the fishes of the Great Lakes and tributary waters, with nomenclatorial notes and analytical keys, vol 15, University of Michigan Museum of Zoology miscellaneous publication. University of Michigan Museum of Zoology, Ann Arbor

    Google Scholar 

  • Hubbs CL, Lagler KF (2004) Fishes of the Great Lakes Region. (Smith GR, revised). University of Michigan, Ann Arbor

    Google Scholar 

  • Jansen AC, Graeb BDS, Willis DW (2009) Effect of a simulated cold-front on hatching success of yellow perch eggs. J Freshw Ecol 24:651–655

    Article  Google Scholar 

  • Jennings MJ, Claussen JE, Philipp DP (1996) Evidence for heritable preferences for spawning habitat between two walleye populations. Trans Am Fish Soc 125:978–986

    Article  Google Scholar 

  • Jones ML, Netto JK, Stockwell JD, Mion JB (2003) Does the value of newly accessible spawning habitat for walleye (Stizostedion vitreum) depend on its location relative to nursery habitats? Can J Fish Aquat Sci 60:1527–1538

    Article  Google Scholar 

  • Jude DJ, Leach J (1999) Great Lakes fisheries. In: Kohler CC, Hubert WA (eds) Inland fisheries management in North America, 2nd edn. American Fisheries Society, Bethesda, pp 623–656

    Google Scholar 

  • Kerr SJ, Corbett BW, Hutchinson NJ, Kinsman D, Leach JH, Puddister D, Stanfield L, Ward N (1997) Walleye habitat: a synthesis of current knowledge with guidelines for conservation. Percid Community Synthesis, Walleye Habitat Working Group, Ontario Ministry of Natural Resources, Peterborough

    Google Scholar 

  • Knight RL (1997) Successful interagency rehabilitation of Lake Erie walleye. Fisheries 22:16–17

    Google Scholar 

  • Kocovsky PM, Knight CT (2012) Morphological evidence for discrete stocks of yellow perch in Lake Erie. J Great Lakes Res 38:534–539

    Article  Google Scholar 

  • Kocovsky PM, Sullivan TJ, Knight CT, Stepien CA (2013) Genetic and morphometric differences demonstrate fine–scale population substructure of the yellow perch Perca flavescens: need for redefined management units. J Fish Biol 82:2015–2030

    Article  CAS  Google Scholar 

  • Kornis MS, Mercado-Silva N, Vander Zanden MJ (2012) Twenty years of invasion: a review of Neogobius melanostomus biology, spread, and ecological implications. J Fish Biol 80:235–285

    Article  CAS  Google Scholar 

  • Kreiger DA, Terrell JW, Nelson PC (1983) Habitat suitability information: yellow perch. U.S. Fish and Wildlife Service FWS/OBS-83/10.55. Washington, DC

    Google Scholar 

  • Kunin WE, Vergeer P, Kenta T, Davey MP, Burke T, Woodward FI, Quick P, Mannarelli M-E, Watson-Haigh NS, Butlin R (2009) Variation at range margins across multiple spatial scales: environmental temperature, population genetics and metabolomic phenotype. Proc R Soc Lond B 276:1495–1506

    Article  Google Scholar 

  • Laporte M, Magnan P, Angers B (2011) Genetic differentiation between the blue and the yellow phenotypes of walleye (Sander vitreus): an example of parallel evolution. Ecoscience 18:124–129

    Article  Google Scholar 

  • Larson G, Schaetzl R (2001) Origin and evolution of the Great Lakes. J Great Lakes Res 27:518–546

    Article  Google Scholar 

  • Leary R, Booke HE (1982) Genetic stock analysis of yellow perch from Green Bay and Lake Michigan. Trans Am Fish Soc 111:52–57

    Article  Google Scholar 

  • LeClerc E, Mailhot Y, Mingelbier M, Bernatchez L (2008) The landscape genetics of yellow perch (Perca flavescens) in a large fluvial ecosystem. Mol Ecol 17:1702–1717

    Article  CAS  Google Scholar 

  • Lewis CFM, Moore TC, Rea DK, Dettman DL, Smith AM, Mayer LA (1994) Lakes of the Huron basin: their record of runoff from the Laurentide Ice Sheet. Quat Sci Rev 13:891–922

    Article  Google Scholar 

  • Li S, Mathias JA (1982) Causes of high mortality among cultured larval walleyes. Trans Am Fish Soc 111:710–721

    Article  Google Scholar 

  • Li L, Wang HP, Givens C, Czesny S, Brown B (2007) Isolation and characterization of microsatellites in yellow perch (Perca flavescens). Mol Ecol Notes 7:600–603

    Article  CAS  Google Scholar 

  • Lindsay DL, Barr KR, Lance RF, Tweddale SA, Hayden TJ, Leberg PL (2008) Habitat fragmentation and genetic diversity of an endangered, migratory songbird, the golden-cheeked warbler (Dendroica chrysoparia). Mol Ecol 17:2122–2133

    Article  Google Scholar 

  • Locke B, Belore M, Cook A, Einhouse D, Kenyon R, Knight R, Newman K, Ryan P, Wright E (2005) Walleye management plan. Lake Erie Committee Great Lakes Fishery Commission. Available at http://www.glfc.org/lakecom/lec/WTG_docs/other_reports_and_docs/wmp20051207.pdf

  • MacCallum WR, Selgeby JH (1987) Lake Superior revisited 1984. Can J Fish Aquat Sci 44:23–36

    Article  Google Scholar 

  • MacDougall TM, Wilson CC, Richardson LM, Lavender M, Ryan PA (2007) Walleye in the Grand River, Ontario: an overview of rehabilitation efforts, their effectiveness, and implications for eastern Lake Erie fisheries. J Great Lakes Res 33:103–117

    Article  Google Scholar 

  • MacGregor RB, Witzel LD (1987). A twelve year study of the fish community in the Nanticoke Region of Long Point Bay, Lake Erie. Lake Erie Fisheries Assessment Unit report 1987-3. Ontario Ministry of Natural Resources, Port Dover

    Google Scholar 

  • Mandrak NE, Crossman EJ (1992) Postglacial dispersal of freshwater fishes into Ontario. Can J Zool 70:2247–2259

    Article  Google Scholar 

  • Mangan MT (2004) Yellow perch production and harvest strategies for semi- permanent wetlands in Eastern South Dakota. MSc thesis, Wildlife and Fisheries Sciences, South Dakota State University

    Google Scholar 

  • Manni F, Guérard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s algorithm. Hum Biol 76:173–190. Available at http://ecoanthropologie.mnhn.fr/software/barrier.html

    Article  Google Scholar 

  • Manning NF, Mayer CM, Bossenbroek JM, Tyson JT (2013) Effects of water clarity on the length and abundance of age-0 yellow perch in the Western Basin of Lake Erie. J Great Lakes Res 39:295–302

    Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  Google Scholar 

  • McParland TL, Ferguson MM, Liskauskas AP (1999) Genetic population structure and mixed-stock analysis of walleyes in the Lake Erie-Lake Huron Corridor using allozymes and mitochondrial DNA markers. Trans Am Fish Soc 128:1055–1067

    Article  CAS  Google Scholar 

  • Merker RJ, Woodruff RC (1996) Molecular evidence for divergent breeding groups of walleye (Stizostedion vitreum) in tributaries to western Lake Erie. J Great Lakes Res 22:280–288

    Article  Google Scholar 

  • Miller LM (2003) Microsatellite DNA loci reveal genetic structure of yellow perch in Lake Michigan. Trans Am Fish Soc 132:503–513

    Article  CAS  Google Scholar 

  • Moran GF, Hopper SD (1983) Genetic diversity and the insular population structure of the rare granite rock species, Eucalyptus caesia Benth. Aust J Bot 31:161–172

    Article  Google Scholar 

  • Moyer GR, Billington N (2004) Stock structure among yellow perch populations throughout North America determined from allozyme and mitochondrial DNA analysis. In: Barry TP, Malison JA (eds) Proceedings of Percis III: the third international percid fish symposium, University of Wisconsin Sea Grant Institute, Madison, pp 96–97

    Google Scholar 

  • Murdoch MH, Hebert PD (1997) Mitochondrial DNA evidence of distinct glacial refugia brown bullhead (Ameiurus nebulosus). Can J Fish Aquat Sci 54:1450–1460

    Article  Google Scholar 

  • Murphy BR (1990) Evidence for a genetically unique walleye population in the upper Tombigbee River system of northeastern Mississippi. Proc SE Fish Counc 22:14–16

    Google Scholar 

  • Murphy S, Collins N, Doka S, Fryer B (2012) Evidence of yellow perch, largemouth bass and pumpkinseed metapopulations in coastal embayments of Lake Ontario. Environ Biol Fish 95:213–226

    Article  Google Scholar 

  • Nesbø CL, Magnhagen C, Jakobsen KS (1998) Genetic differentiation among stationary and anadromous perch (Perca fluviatilis) in the Baltic Sea. Hereditas 129:241–249

    Article  Google Scholar 

  • Nesbø CL, Fossheim T, Vollestad LA, Jakobsen KS (1999) Genetic divergence and phylogeographic relationships among European perch (Perca fluviatilis) populations reflect glacial refugia and postglacial colonization. Mol Ecol 8:1387–1404

    Article  Google Scholar 

  • Newbrey MG, Ashworth AC (2004) A fossil record of colonization and response of lacustrine fish populations to climate change. Can J Fish Aquat Sci 61:1807–1816

    Article  Google Scholar 

  • Noecker RJ (1998) Endangered species list revisions: a summary of delisting and downlisting. CRS report for congress 98-32 ENR

    Google Scholar 

  • Oberdorff T, Hugueny B, Guégan J-F (1997) Is there an influence of historical events on contemporary fish species richness in rivers? Comparisons between western Europe and North America. J Biogeogr 24:461–467

    Article  Google Scholar 

  • Olson DE, Scidmore WJ (1962) Homing behavior of spawning walleyes. Trans Am Fish Soc 91:355–361

    Article  Google Scholar 

  • OMNR (Ontario Ministry of Natural Resources) (2011) 2006–2009 annual report. Lake Erie MU

    Google Scholar 

  • Paradis Y, Magnan P (2005) Phenotypic variation of walleye, Sander vitreus, in Canadian Shield lakes: new insights on percid polymorphism. Environ Biol Fish 73:357–366

    Article  Google Scholar 

  • Parker AD, Stepien CA, Sepulveda-Villet OJ, Ruehl CB, Uzarski DG (2009) The interplay of morphology, habitat, resource use, and genetic relationships in young yellow perch. Trans Am Fish Soc 138:899–914

    Article  Google Scholar 

  • Petit RJ, Aguinaglade I, de Beaulieu J-L, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M, Mohanty A, Müller-Starck G, Demesure-Musch B, Palmé A, Martín JP, Rendell S, Vendramin GG (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565

    Article  CAS  Google Scholar 

  • Pritchard JK, Wen W (2004) Documentation for STRUCTURE software: ver. 2.3.3. Stanford University. Available at http://pritchardlab.stanford.edu/software.html

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  Google Scholar 

  • Provan J, Bennett KD (2008) Phylogeographic insights into cryptic glacial refugia. Trends Ecol Evol 23:564–571

    Article  Google Scholar 

  • Radabaugh NB, Bauer WF, Brown ML (2010) A comparison of seasonal movement patterns of yellow perch in simple and complex lake basins. N Am J Fish Manag 30:179–190

    Article  Google Scholar 

  • Rawson MR (1980) Yellow perch movements. Ohio Department of Natural Resources Job Program Report, Dingell–Johnson project number F-35-R-18, study number 4, 1 Nov 1979–30 Jun 1980

    Google Scholar 

  • Redman RA, Czesny SJ, Dettmers JM (2013) Yellow perch population assessment in Southwestern Lake Michigan. INHS technical report 2013 (25), Division of Fisheries, Illinois Department of Natural Resources, Champaign

    Google Scholar 

  • Refseth UH, Nesbø CL, Stacy JE, Vøllestad LA, Fjeld E, Jakobsen KS (1998) Genetic evidence for different migration routes of freshwater fish into Norway revealed by analysis of current perch (Perca fluviatilis) populations in Scandinavia. Mol Ecol 7:1015–1027

    Article  CAS  Google Scholar 

  • Regier HA, Hartman WL (1973) Lake Erie’s fish community: 150 years of cultural stresses. Science 180:1248–1255

    Article  CAS  Google Scholar 

  • Rempel LL, Smith DG (1998) Postglacial fish dispersal from the Mississippi refuge to the Mackenzie River basin. Can J Fish Aquat Sci 55:893–899

    Article  Google Scholar 

  • Rice RM (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Rodrigues CG, Vilks G (1994) The impact of glacial lake runoff on the Goldthwait and Champlain Seas: the relationship between glacial Lake Agassiz runoff and the younger dryas. Quat Sci Rev 13:923–944

    Article  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. http://mrbayes.sourceforge.net/. (v3.1.2 2005)

    Article  CAS  Google Scholar 

  • Roseman EF, Taylor WW, Hayes DB, Tyson JT, Haas RC (2005) Spatial patterns emphasize the importance of coastal zones as nursery areas for larval walleye in western Lake Erie. J Great Lakes Res 31:28–44

    Article  Google Scholar 

  • Rousset F (2008) Genepop’008: a complete re-implementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8:103–106. Available at http://kimura.univ-montp2.fr/%7Erousset/Genepop.htm

    Article  Google Scholar 

  • Russell DA, Rich FJ, Schneider V, Lynch-Stieglitz J (2009) A warm thermal enclave in the Late Pleistocene of the south-eastern United States. Biol Rev 84:173–202

    Article  Google Scholar 

  • Ryan PA, Knight R, MacGregor R, Towns G, Hoopes R, Culligan W (2003) Fish-community goals and objectives for Lake Erie, Great Lakes Fishery Commission special publication 03-02. Great Lakes Fishery Commission, Ann Arbor

    Google Scholar 

  • Saarnisto M (1974) The deglaciation history of the Lake Superior region and its climatic implications. Quatern Res 4:316–339

    Article  Google Scholar 

  • Schmidt RE (1986) Zoogeography of the northern Appalachians. In: Hocutt CH, Wiley EO (eds) The zoogeography of North American freshwater fishes. Wiley, New York, pp 137–159

    Google Scholar 

  • Schneider JC, Leach JH (1977) Walleye (Stizostedion vitreum vitreum) fluctuations in the Great Lakes and possible causes, 1800–1975. J Fish Res Board Can 34:1878–1889

    Article  Google Scholar 

  • Schram ST, Seider MJ, Furlong PD, Friday MJ (2010) Status of walleye in Lake Superior. In: Roseman E, Kocovsky P, Vandergoot C (eds) Status of walleye in the Great Lakes: proceedings of the 2006 symposium. Great Lakes Fishery Commission technical report 69, Ann Arbor, pp 1–13

    Google Scholar 

  • Scott WB, Crossman EJ (1973) Freshwater fishes of Canada. J Fish Res Board Can 184:1–196

    Google Scholar 

  • Sepulveda-Villet OJ, Stepien CA (2011) Fine-scale population genetic structure of the yellow perch Perca flavescens in Lake Erie. Can J Fish Aquat Sci 68:1435–1453

    Article  Google Scholar 

  • Sepulveda–Villet OJ, Stepien CA (2012) Waterscape genetics of the yellow perch (Perca flavescens): patterns across large connected ecosystems and isolated relict populations. Mol Ecol 21:5795–5826

    Article  Google Scholar 

  • Sepulveda-Villet OJ, Ford AM, Williams JD, Stepien CA (2009) Population genetic diversity and phylogeographic divergence patterns of the yellow perch (Perca flavescens). J Great Lakes Res 35:107–119

    Article  Google Scholar 

  • Shuter BJ, Post JR (1990) Climate, population viability, and the zoogeography of temperate fishes. Trans Am Fish Soc 119:314–336

    Article  Google Scholar 

  • Simon TP, Wallus R (2006) Reproductive biology and early life history of fishes in the Ohio River drainage vol. 4: Percidae – perch, pikeperch, and darters. CRC Taylor and Francis, Boca Raton

    Google Scholar 

  • Sloss BL, Billington N, Burr BM (2004) A molecular phylogeny of the Percidae (Teleostei, Perciformes) based on mitochondrial DNA sequence. Mol Phylogenet Evol 32:545–562

    Article  CAS  Google Scholar 

  • Soltis DE, Morris AB, McLachlan JS, Manos PS, Soltis PS (2006) Comparative phylogeography of unglaciated eastern North America. Mol Ecol 15:4261–4293

    Article  Google Scholar 

  • Song CB, Near TJ, Page LM (1998) Phylogenetic relations among percid fishes as inferred from mitochondrial cytochrome b DNA sequence data. Mol Phylogenet Evol 10:343–353

    Article  CAS  Google Scholar 

  • Sruoga A, Butkauskas D, Rashal I (2008) Evaluation of genetic diversity of perch (Perca fluviatilis) and pikeperch (Sander lucioperca) populations from Curonian lagoon and inshore waters of the Baltic Sea. Acta Biol Univ Daugavpils 8:81–88

    Google Scholar 

  • Stepien CA, Faber JE (1998) Population genetic structure, phylogeography, and spawning philopatry in Walleye (Stizostedion vitreum) from mtDNA control region sequences. Mol Ecol 7:1757–1769

    Article  CAS  Google Scholar 

  • Stepien CA, Dillon AK, Chandler MD (1998) Genetic identity, phylogeography, and systematics of ruffe Gymnocephalus in the North American Great Lakes and Eurasia. J Great Lakes Res 24:361–378

    Article  CAS  Google Scholar 

  • Stepien CA, Taylor CD, Einhouse DW (2004) An analysis of genetic risk to a native spawning stock of walleye Sander vitreus (Stizostedion vitreum) due to stocking in Cattaraugus Creek. In: Barry TP, Malison JA (eds) Proceedings of Percis III: the third international percid fish symposium, University of Wisconsin Sea Grant Institute, Madison, pp 93–94

    Google Scholar 

  • Stepien CA, Brown JE, Neilson ME, Tumeo MA (2005) Genetic diversity of invasive species in the Great Lakes versus their Eurasian source populations: insights for risk analysis. Risk Anal 25:1043–1060

    Article  Google Scholar 

  • Stepien CA, Murphy DJ, Strange RM (2007) Broad- to fine-scale population genetic patterning in the smallmouth bass Micropterus dolomieu across the Laurentian Great Lakes and beyond: an interplay of behaviour and geography. Mol Ecol 16:1605–1624

    Article  CAS  Google Scholar 

  • Stepien CA, Murphy DJ, Lohner RN, Sepulveda–Villet OJ, Haponski AE (2009) Signatures of vicariance, postglacial dispersal, and spawning philopatry: population genetics and biogeography of the walleye Sander vitreus. Mol Ecol 18:3411–3428

    Article  CAS  Google Scholar 

  • Stepien CA, Murphy DJ, Lohner RN, Haponski AE, Sepulveda–Villet OJ (2010) Status and delineation of walleye (Sander vitreus) genetic stock structure across the Great Lakes. In: Roseman E, Kocovsky P, Vandergoot C (eds) Status of walleye in the Great Lakes: proceedings of the 2006 symposium. Great Lakes Fishery Commission technical report 69, Ann Arbor, pp 189–223

    Google Scholar 

  • Stepien CA, Banda JA, Murphy DJ, Haponski AE (2012) Temporal and spatial genetic consistency of walleye (Sander vitreus) spawning groups. Trans Am Fish Soc 141:660–672

    Article  Google Scholar 

  • Stone FL (1948) A study of the taxonomy of the blue and yellow pikeperches (Stizostedion) of Lake Erie and Lake Ontario. Unpublished PhD dissertation, University of Rochester, Rochester

    Google Scholar 

  • Stott W, Ebener MP, Mohr L, Hartman T, Johnson J, Roseman EF (2013) Spatial and temporal genetic diversity of lake whitefish (Coregonus clupeaformis (Mitchill)) from Lake Huron and Lake Erie. Adv Limnol 64:205–222

    Article  Google Scholar 

  • Strange RM, Stepien CA (2007) Genetic divergence and connectivity among river and reef spawning groups of walleye (Sander vitreus) in Lake Erie. Can J Fish Aquat Sci 64:437–448

    Article  Google Scholar 

  • Sullivan TJ, Stepien CA (2014) Genetic diversity and divergence of yellow perch spawning populations across the Huron–Erie Corridor, from Lake Huron through western Lake Erie. J Great Lakes Res 40:101–109

    Article  Google Scholar 

  • Sullivan TJ, Stepien CA (2015) Temporal population genetic structure of yellow perch spawning groups in the lower Great Lakes. Trans Am Fish Soc 144:211–226

    Article  Google Scholar 

  • Teller JT, Mahnic P (1988) History of sedimentation in the northwestern Lake Superior basin and its relation to Lake Agassiz overflow. Can J Earth Sci 25:1660–1673

    Article  Google Scholar 

  • Timmerman AJ (1995) Walleye assessment and enhancement projects in the middle Grand River watershed 1987–1995. Ontario Ministry of Natural Resources, Cambridge District, Guelph

    Google Scholar 

  • Todd TN, Hatcher CO (1993) Genetic variability and glacial origins of yellow perch (Perca flavescens) in North America. Can J Fish Aquat Sci 50:1828–1834

    Article  Google Scholar 

  • Trautman MB (1981) The fishes of Ohio. Ohio State University Press, Columbus

    Google Scholar 

  • Truemper HA, Lauer TE (2005) Gape limitation and piscine prey size-selection by yellow perch in the extreme southern area of Lake Michigan, with emphasis on two exotic prey items. J Fish Biol 66:135–149

    Article  Google Scholar 

  • Turgeon J, Bernatchez L (2001) Mitochondrial DNA phylogeography of lake cisco (Coregonus artedi): evidence supporting extensive secondary contacts between two glacial races. Mol Ecol 10:987–1001

    Article  CAS  Google Scholar 

  • Underhill JC (1986) The fish fauna of the Laurentian Great Lakes, the St. Lawrence lowlands, Newfoundland, and Labrador. In: Hocutt CH, Wiley EO (eds) The zoogeography of North American freshwater fishes. Wiley, New York, pp 105–136

    Google Scholar 

  • USFWS/GLFC (United States Fish and Wildlife Service/Great Lakes Fishery Commission) (2010) Great Lakes Fish Stocking database. U.S. Fish and Wildlife Service, Region 3 Fisheries Program, and Great Lakes Fishery Commission. Available at http://www.glfc.org/fishstocking/

  • Vandewoestijne S, Schtickzelle N, Baguette M (2008) Positive correlation between genetic diversity and fitness in a large, well-connected metapopulation. BMC Biol 6:46

    Article  Google Scholar 

  • Walter RP, Cena CJ, Morgan GE, Heath DD (2012) Historical and anthropogenic factors affecting the population genetic structure of Ontario’s inland lake populations of walleye (Sander vitreus). J Hered 103:831–841

    Article  Google Scholar 

  • Wang HY, Rutherford ES, Cook HA, Einhouse DW, Haas RC, Johnson TB, Kenyon R, Locke B, Turner MW (2007) Movement of walleye in Lakes Erie and St. Clair inferred from tag return and fisheries data. Trans Am Fish Soc 136:539–551

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F–statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wilson CC, Hebert PD (1996) Phylogeographic origins of lake trout (Salvelinus namaycush) in eastern North America. Can J Fish Aquat Sci 53:2764–2775

    Article  Google Scholar 

  • Wirth T, Saint-Laurent R, Bernatchez L (1999) Isolation and characterization of microsatellite loci in the walleye (Stizostedion vitreum), and cross–species amplification within the family Percidae. Mol Ecol 8:1960–1962

    Article  CAS  Google Scholar 

  • Wolfert DR, Van Meter HD (1978) Movements of walleyes tagged in eastern Lake Erie. N Y Fish Game J 25:16–22

    Google Scholar 

  • WTG (Walleye Task Group of the Lake Erie Committee, Great Lakes Fishery Commission) (2014) Report for 2013 by the Lake Erie walleye Task Group. Great Lakes Fishery Commission Ann Arbor. Available at http://www.glfc.org/lakecom/lec/WTG_docs/annual_reports/WTG_report_2014.pdf

  • YPTG (Yellow Perch Task Group of the Lake Erie Committee, Great Lakes Fishery Commission) (2014) Report of the Lake Erie yellow perch task group. Great Lakes Fishery Commission Ann Arbor. Available at http://www.glfc.org/lakecom/lec/YPTG_docs/annual_reports/YPTG_report_2014.pdf

  • Yu C, Ferraro D, Ramaswamy S, Schmitz MH, Schaefer WF, Gibson DT (2008) Purification and properties of sandercyanin, a blue protein secreted in the mucus of blue forms of walleye, Sander vitreus. Environ Biol Fish 82:51–58

    Article  Google Scholar 

  • Zhao Y, Shuter BJ, Jackson DA (2008) Life history variation parallels phylogeographical patterns in North American walleye (Sander vitreus) populations. Can J Fish Aquat Sci 65:198–211

    Article  Google Scholar 

  • Zhao Y, Jones ML, Shuter BJ, Roseman EF (2009) A biophysical model of Lake Erie walleye (Sander vitreus) explains interannual variations in recruitment. Can J Fish Aquat Sci 66:114–125

    Article  Google Scholar 

Download references

Acknowledgements

This is publication #2015-07 from the University of Toledo’s Lake Erie Research Center. We thank Timothy Sullivan, who completed his master’s degree in 2013 from our Great Lakes Genetics Laboratory under CAS for supplying his latest results. Support for our research reported here came from the National Science Foundation NSF GK-12 DGE#0742395, the USEPA #CR-83281401-0, NOAA Ohio Sea Grant R/LR-013, and USDA ARS 3655-31000-020-00D funded to CAS. We greatly appreciate samples supplied by the USGS (Bruce Manny, Patrick Kocovsky, Wendylee Stott, Edward Roseman, Jeffrey Williamson), Ohio DNR (Kevin Kayle, Cary Knight, Roger Knight, Matthew Turner, Jeffrey Tyson, Christopher Vandergoot), Michigan DNR (David Clapp, Robert Haas, Michael Thomas), New York Department of Environmental Conservation (Brian Beckwith, Donald Einhouse), Pennsylvania Fish and Boat Commission (Roger Kenyon), Ontario Ministry of Natural Resources (Christopher Wilson, Timothy Johnson), and from various colleagues including Louis Bernatchez, Neil Billington, Eric Hallerman, Wolfgang Jansen, Brandon Kulik, Christine Mayer, Ellen Marsden, Douglas Nelson, Alex Parker, Webb Pearsall, Lars Rudstam, Wayne Schaefer, Roy Stein, and Matthew White. The manuscript benefitted from careful review by Patrick Kocovsky and Edward Roseman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol A. Stepien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stepien, C.A., Sepulveda-Villet, O.J., Haponski, A.E. (2015). Comparative Genetic Diversity, Population Structure, and Adaptations of Walleye and Yellow Perch Across North America. In: Kestemont, P., Dabrowski, K., Summerfelt, R. (eds) Biology and Culture of Percid Fishes. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7227-3_25

Download citation

Publish with us

Policies and ethics