Nanoparticles and Marine Environment: An Overview

  • I. Ciglenečki
  • V. Svetličić
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)


In natural waters, including seawater, which can be considered as extreme environment regarding high ionic strength conditions, NPs can transform, adopting strikingly different behavior. There they might be unstable, and subject to fast aggregation and sedimentation that eliminates them from the water column. Adversely, the interaction between metal bearing NPs and organic material (OM) could change their physico-chemical properties, distribution, and persistence in the water column. In general, understanding the behavior and fate of NPs in the aquatic environment is still limited due to lack of efficient methods for their characterization.

Electroanalytical methods in combination with the state-of-the art technique (e.g. AFM) are recognized as a good choice for studying different biogeochemical processes in the marine environment, especially those related with OM, sulfur species and trace metals cycling, and the interaction and distribution between dissolved and colloidal phases. Long-term studies of surface-active particles in the northern Adriatic Sea provided evidence that biotic, as well as abiotic, transformation of OM at the micro and nanoscale are at the root of macroscopic phenomena in the sea. The advent of AFM opened a possibility to directly explore these processes at the scale that determines the fate of OM and its interaction with metal bearing NPs in the seawater.


Organic colloids Metal and sulfur bearing nanoparticles Seawater AFM Voltammetry Amperometry 



This work is supported by the Ministry of Science and Technology of the Republic of Croatia projects Nos. 098-0982934-2717 and 098-0982934-2744 and the Unity through Knowledge Fund, UKF project: “Nanoparticles in aqueous environment: electrochemical, nanogravimetric, STM and AFM studies”. The COST Action TD1002: “European network on application of Atomic Force Microscopy to NanoMedicine and Life Sciences” is acknowledged for providing fruitful collaborations. Croatian Science Foundation project IP-11-2013-1205 SPHERE.


  1. 1.
    ASTM International (2006) Standard terminology relating to nanotechnology. ASTM Standard E 2456-06. American Society for Testing and Materials, West ConshohockenGoogle Scholar
  2. 2.
    Buffle J, Van Leeuwen H (1992) Environmental particles, vol 1. Lewis Publishers, ChelseaGoogle Scholar
  3. 3.
    Lead JR, Wilkinson KJ (2006) Aquatic colloids and nanoparticles: current knowledge and future trends. Environ Chem 3:159–171CrossRefGoogle Scholar
  4. 4.
    Ju-Nam Y, Lead JR (2008) Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400:396–414CrossRefGoogle Scholar
  5. 5.
    Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRefGoogle Scholar
  6. 6.
    Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22CrossRefGoogle Scholar
  7. 7.
    Kirschling TL, Gregory KB, Minkley JEG et al (2010) Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environ Sci Technol 44(9):3474–3480CrossRefGoogle Scholar
  8. 8.
    Ziegmann M, Frimmel FH (2010) Photocatalytic degradation of clofibric acid, carbamazepine and iomeprol using conglomerated TiO2 and activated carbon in aqueous suspension. Water Sci Technol 61(1):273–281CrossRefGoogle Scholar
  9. 9.
    Dong Y, Feng SS (2007) In vitro and in vivo evaluation of methoxy polyethylene glycol-polylactide (MPEG-PLA) nanoparticles for small-molecule drug chemotherapy. Biomaterials 28:4154–4160CrossRefGoogle Scholar
  10. 10.
    Linkov I, Steevens J, Adlakha-Hutcheon G et al (2009) Emerging methods and tools for environmental risk assessment, decision-making, and policy for nanomaterials: summary of NATO advanced research workshop. J Nanopart Res 11:513–527CrossRefGoogle Scholar
  11. 11.
    Tervonen T, Linkov I, Figueira JR et al (2009) Risk-based classification system of nanomaterials. J Nanopart Res 11:757–766CrossRefGoogle Scholar
  12. 12.
    Domingos RF, Baalousha MA, Ju‐Nam Y et al (2009) Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes. Environ Sci Technol 43:7277–7284CrossRefGoogle Scholar
  13. 13.
    Fatisson J, Domingos RF, Wilkinson KJ et al (2009) Deposition of TiO2 nanoparticles onto silica measured using a quartz crystal microbalance with dissipation monitoring. Langmuir 25(11):6062–6069CrossRefGoogle Scholar
  14. 14.
    Quevedo IR, Tufenkji N (2009) Influence of solution chemistry on the deposition and detachment kinetics of a CdTe quantum dot examined using a quartz crystal microbalance. Environ Sci Technol 43:3176–3182CrossRefGoogle Scholar
  15. 15.
    Malloy A, Hole P, Carr B (2007) Nanoparticle tracking analysis; the Halo system. In: Ash B (ed) Integrated nanosensors, Mater Res Soc Symp Proc: 952E, Warrendale, 2007, 0952-F02-04Google Scholar
  16. 16.
    Pinheiro JP, Domingos R, Lopez R et al (2007) Determination of diffusion coefficients of nanoparticles and humic substances using scanning stripping chronopotentiometry. Colloids Surf A 295:200–208CrossRefGoogle Scholar
  17. 17.
    Bura-Nakić E, Krznarić D, Jurašin D et al (2007) Voltammetric characterization of metal sulfide particles and nanoparticles in model solutions and natural waters. Anal Chim Acta 594(1):44–51CrossRefGoogle Scholar
  18. 18.
    Bura-Nakić E, Krznarić D, Helz GR et al (2011) Characterization of iron sulfide species in model solutions by cyclic voltammetry. Revisiting an old problem. Electroanalysis 23:1376–1382CrossRefGoogle Scholar
  19. 19.
    Ciglenečki I, Krznarić D, Helz GR (2005) Voltammetry of copper sulfide particles and nanoparticles: investigation of the cluster hypothesis. Environ Sci Technol 39(19):7492–7498CrossRefGoogle Scholar
  20. 20.
    Helz GR, Ciglenečki I, Krznarić D et al (2011) Voltammetry of sulfide nanoparticles and the FeS(aq) problem. In: Tratnyek PG, Grundl TJ, Haderlein SB (eds) Aquatic redox chemistry. American Chemical Society, Washington, DC, pp 265–282CrossRefGoogle Scholar
  21. 21.
    Krznarić D, Helz GR, Ciglenečki I (2006) Prospect of determining copper sulfide nanoparticles by voltammetry: a potential artifact in supersaturated solution. J Electroanal Chem 590:207–214CrossRefGoogle Scholar
  22. 22.
    Krznarić D, Helz GR, Bura-Nakić E et al (2008) Accumulation mechanism for metal chalcogenide nanoparticles at Hg electrodes: Cu sulfide example. Anal Chem 80(3):742–749CrossRefGoogle Scholar
  23. 23.
    Krznarić D, Ciglenečki I (2014) Voltammetric study of an FeS layer on a Hg electrode in supersaturated FeS chloride solution. Environ Chem 12(2):123–129CrossRefGoogle Scholar
  24. 24.
    Bura-Nakić E, Marguš M, Milanović I et al (2014) The development of electrochemical methods for determining nanoparticles in the environment. Part II. Chronoamperometric study of FeS in sodium chloride solutions. Environ Chem 11(2):187–195CrossRefGoogle Scholar
  25. 25.
    Bura-Nakić E, Marguš M, Jurašin D et al (2015) Chronoamperometric study of elemental sulfur (S) nanoparticles (NPs) in NaCl water solution: new methodology for S NPs sizing and detection. Geochem Trans 16:1. doi: 10.1186/s12932-015-0016-2 CrossRefGoogle Scholar
  26. 26.
    Ciglenečki I, Marguš M, Bura-Nakić E, Milanović I (2014) Electroanalytical methods in characterization of sulfur species in aqueous environment. J Electrochem Sci Eng 4:155–163Google Scholar
  27. 27.
    Kovač S, Svetličić V, Žutić V (1999) Molecular adsorption vs. cell adhesion at an electrified aqueos interface. Colloids Surf A 149:481–489CrossRefGoogle Scholar
  28. 28.
    Svetličić V, Ivošević N, Kovač S et al (2000) Charge displacement by adhesion and spreading of a cell: amperometric signals of living cells. Langmuir 16:8217–8220CrossRefGoogle Scholar
  29. 29.
    Svetličić V, Ivošević N, Kovač S et al (2000) Charge displacement by adhesion and spreading of a cell. Bioelectrochemistry 53:79–86CrossRefGoogle Scholar
  30. 30.
    Svetličić V, Hozić A (2002) Probing cell surface charge by scanning electrode potential. Electrophoresis 23:2080–2086CrossRefGoogle Scholar
  31. 31.
    Xiao X, Fan FRF, Zhou J (2008) Current transients in single nanoparticle collision events. J Am Chem Soc 130:16669–16677CrossRefGoogle Scholar
  32. 32.
    Delay M, Frimmel FH (2012) Nanoparticles in aquatic systems. Anal Bioanal Chem 402:583–592CrossRefGoogle Scholar
  33. 33.
    Bura-Nakić E, Viollier E, Jezequel D et al (2009) Reduced sulfur and iron species in anoxic water column of meromictic crater Lake Pavin (Massif Central, France). Chem Geol 266:320–326Google Scholar
  34. 34.
    Bura-Nakić E, Viollier E, Ciglenečki I (2013) Electrochemical and colorimetric measurements show the dominant role of FeS in a permanently anoxic lake. Environ Sci Technol 43:741–749CrossRefGoogle Scholar
  35. 35.
    Mullaugh KM, Luther GW III (2010) Spectroscopic determination of the size of cadmium sulfide nanoparticles formed under environmentally relevant conditions. J Environ Monit 12:890–897CrossRefGoogle Scholar
  36. 36.
    Mullaugh KM, Luther GW III (2011) Growth kinetics and long-term stability of CdS nanoparticles in aqueous solution under ambient conditions. J Nanopart Res 13:393–404CrossRefGoogle Scholar
  37. 37.
    Sukola K, Wang FY, Tessier A (2005) Metal-sulfide species in oxic waters. Anal Chim Acta 528:183–195CrossRefGoogle Scholar
  38. 38.
    Ballou B, Lagerholm BC, Ernst LA et al (2004) Noninvasive imaging of quantum dots in mice. Bioconjug Chem 15:79–86CrossRefGoogle Scholar
  39. 39.
    Kiørboe T, Hansen JLS (1993) Phytoplankton aggregate formation: observations of patterns and mechanisms of cell sticking and the significance of exopolymeric material. J Plankton Res 15:993–1018CrossRefGoogle Scholar
  40. 40.
    Vollenweider RA, Rinaldi A (eds) (1995) Marine mucilage. Sci Total Environ 165 (Special issue), pp 1–235Google Scholar
  41. 41.
    Ciglenečki I, Ćosović B, Vojvodić V et al (2000) The role of reduced sulfur species in the coalescence of polysaccharides in the Adriatic sea. Mar Chem 71:233–249CrossRefGoogle Scholar
  42. 42.
    Ciglenečki I, Plavšić M, Vojvodić V et al (2003) Mucopolysaccharide transformation by sulfide in diatom culture and natural mucilage. Mar Ecol Prog Ser 263:17–27CrossRefGoogle Scholar
  43. 43.
    Degobbis D, Precali R, Ferrari CR et al (2005) Changes in nutrient concentrations and ratios during mucilage events in the period 1999–2002. Sci Total Environ 353:103–114CrossRefGoogle Scholar
  44. 44.
    Kovac N, Faganeli J, Sket B et al (1998) Characterization of macroaggregates and photodegradation of their water soluble fraction. Org Geochem 29(5–7):1623–1634CrossRefGoogle Scholar
  45. 45.
    Mišić Radić T, Svetličić V, Žutić V et al (2011) Seawater at the nanoscale: marine gel imaged by atomic force microscopy. J Mol Recognit 24:397–405CrossRefGoogle Scholar
  46. 46.
    Pletikapić G, Mišić Radić T, Zimmermann H et al (2011) Extracellular polymer release AFM imaging of extracellular polymer release by marine diatom Cylindrotheca closterium (Ehrenberg) Reiman & J.C Lewin. J Mol Recognit 24:436–445CrossRefGoogle Scholar
  47. 47.
    Mecozzi M, Acquistucci R, Di Nato V et al (2001) Characterization of mucilage aggregates in Adriatic and Tyrrhenian sea: structure similarities between mucilage samples and the insoluble fractions of marine humic substance. Chemosphere 44:709–720CrossRefGoogle Scholar
  48. 48.
    Baldi F, Minacci A, Saliot A et al (1997) Cell lyses and release of particulate polysaccharides in extensive marine mucilage assessed by lipid biomarkers and molecular probes. Mar Ecol Prog Ser 153:45–58CrossRefGoogle Scholar
  49. 49.
    Zhou J, Mopper K, Passow U (1998) The role of surface-active carbohydrates in the formation of transparent exopolymer particles by bubble adsorption of seawater. Limnol Oceanogr 43:1860–1871Google Scholar
  50. 50.
    Passow U (2002) Transparent exopolymer particles (TEP) in aquatic environments. Prog Oceanogr 55:287–333CrossRefGoogle Scholar
  51. 51.
    Prieto L, Ruiz J, Echevarria F, Garcia CM, Bartual A, Galvez JA, Corzo A, Macias D (2002) Scales and processes in the aggregation of diatom blooms: high time resolution and wide size range records in a mesocosm study. Deep Sea Res I 49:1233–1253CrossRefGoogle Scholar
  52. 52.
    Ćosović B, Kozarac Z, Frka S et al (2010) Electrochemical adsorption study of natural organic matter in marine and freshwater systems. A plea for use of mercury for scientific purposes. Electroanalysis 22(17–18):1994–2000Google Scholar
  53. 53.
    Ćosović B, Vojvodić V (1998) Voltammetric analysis of surface active substances in natural waters. Electroanalysis 10:429–434CrossRefGoogle Scholar
  54. 54.
    Bura-Nakić E, Helz GR, Ćosović B et al (2009) Seasonal variations in reduced sulphur species in a stratified lake (Rogoznica Lake, Croatia); evidence for organic carriers of reactive sulfur. Geochim Cosmochim Acta 73:3738–3751CrossRefGoogle Scholar
  55. 55.
    Ciglenečki I, Kodba Z, Ćosović B (1996) Sulfur species in Rogoznica Lake. Mar Chem 53:101–110CrossRefGoogle Scholar
  56. 56.
    Buffle J, Tercier-Weber M-L (2005) Voltammetric environmental trace metal analysis and speciation. From laboratory to in situ measurements. Trends Anal Chem 24:172–191CrossRefGoogle Scholar
  57. 57.
    Milanović I, Krznarić D, Bura-Nakić E et al (2014) Deposition and dissolution of metal sulfide layers at the Hg electrode surface in seawater electrolyte conditions. Environ Chem 11(2):167–172CrossRefGoogle Scholar
  58. 58.
    Pletikapić G, Vinković Vrček I, Žutić V et al (2012) Atomic force microscopy characterization of silver nanoparticles interactions with marine diatom cells and extracellular polymeric substance. J Mol Recognit 25:309–317CrossRefGoogle Scholar
  59. 59.
    Pletikapić G, Berquand A, Mišić Radić T et al (2012) Quantitative nanomechanical mapping of marine diatom. J Phycol 48:174–185CrossRefGoogle Scholar
  60. 60.
    Svetličić V, Žutić V, Hozić Zimmermann A (2005) Biophysical scenario of giant gel formation in the northern Adriatic sea. Ann N Y Acad 1048:524–527CrossRefGoogle Scholar
  61. 61.
    Svetličić V, Žutić V, Mišić Radić T et al (2011) Polymer networks produced by marine diatoms in the northern Adriatic sea. Mar Drugs 9:666–679CrossRefGoogle Scholar
  62. 62.
    Svetličić V, Žutić V, Pletikapić G et al (2013) Marine polysaccharide networks and diatoms at the nanometric scale. Int J Mol Sci 14:20064–20078CrossRefGoogle Scholar
  63. 63.
    Urbani R, Sist P, Pletikapić G et al (2012) Diatom polysaccharides: extracellular production, isolation and molecular characterization. In: Karunaratn DN (ed) The complex world of polysaccharide. Intech, Rijeka, pp 345–370Google Scholar
  64. 64.
    Pletikapić G, Lannon H, Murvai U et al (2014) Self-assembly of polysaccharides gives rise to distinct mechanical signatures in marine gels. Biophys J 107:355–364CrossRefGoogle Scholar
  65. 65.
    Miao AJ, Schwehr KA, Xu C et al (2009) The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environ Pollut 157:3034–3041CrossRefGoogle Scholar
  66. 66.
    Navarro E, Baun A, Behra R et al (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386CrossRefGoogle Scholar
  67. 67.
    Miller RJ, Hunters L, Muller E et al (2010) Impacts of metal oxide nanoparticles on marine phytoplankton. Environ Sci Technol 44:7329–7334CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Division for Marine and Environmental ResearchRudjer Bošković InstituteZagrebCroatia

Personalised recommendations