Application of Cost-Effective Biological Tools for Assessing of Chemical Poisoning

  • Olga Malev
  • Roberta Sauerborn Klobučar
  • Tatjana Tišler
  • Damjana Drobne
  • Polonca Trebše
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)


There is an enormous amount of new chemicals emerging every day with potential adverse effects for humans and environment. To assess these chemicals we need cost effective and reliable biological tools. Here we present in detail one of many bioassays suited for assessing chemical poisoning in the environment. This is a terrestrial isopod single-species test. Advantages of this test with terrestrial isopods are its flexibility in terms of exposure duration and versatile biomarker selection. By alternating test duration, one can test also those substances which are with moderate or low toxic potential; while a variety of biomarkers at different levels of biological complexity increase the relevance of tests results. In addition to laboratory single-species tests, terrestrial isopods could also be used for biomonitoring of pollutants. So far, this was thoroughly assessed in case of metal pollution, although isopods have a potential to be used also for biomonitoring of some organic substances and metal based nanoparticles. This is usually not the case in other standardised ecotoxicity tests species. In addition, we discuss that at present, we do not need completely new tests for emerging substances like new generations pesticides, personal care products and products of nanotechnologies, but is sufficient to adopt and modify existing test protocols.


Hazard identification Toxicity assessment Pesticides Nanoparticles Terrestrial isopods 


  1. 1.
    Escher BI, Bramaz N, Mueller JF, Quayle P, Rutishausera S, Vermeirssena ELM (2008) Toxic equivalent concentrations (TEQs) for baseline toxicity and specific modes of action as a tool to improve interpretation of ecotoxicity testing of environmental samples. J Environ Monit 10:612–621CrossRefGoogle Scholar
  2. 2.
    Mitchell EJAK, Burgess JE, Stuetz RM (2002) Developments in ecotoxicity testing. Rev Environ Sci Biotechnol 1:169–198CrossRefGoogle Scholar
  3. 3. Accessed 20 Sept 2014
  4. 4.
    Bavcon Kralj M, Černigoj U, Franko M, Trebše P (2007) Comparison of photocatalysis and photolysis of malathion, isomalathion, malaoxon, and commercial malathion-products and toxicity studies. Water Res 41:4504–4514CrossRefGoogle Scholar
  5. 5.
    Kolpin DW, Battaglin WA, Conn KE, Furlong ET, Glassmeyer ST, Kalkhoff SJ, Meyer MT, Schnoebelen DJ (2009) Handbook of environmental chemistry. Transform Prod Synth Chem Environ 2P:83–100CrossRefGoogle Scholar
  6. 6.
    Tennekes H (ed) (2010) The systemic insecticides: a disaster in the making. Northern Bee Books, MytholmroydGoogle Scholar
  7. 7.
    Tomizawa M, Casida JE (2003) Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annu Rev Entomol 48:339–364CrossRefGoogle Scholar
  8. 8.
    Cordova D, Benner EA, Sacher MD, Rauh JJ, Sopa JS, Lahm GP, Selby TP, Stevenson TM, Flexner L, Gutteridge S, Rhoades DF, Wu L, Smith RM, Tao Y (2006) Anthranilic diamides: a new class of insecticides with a novel mode of action, ryanodine receptor activation. Pestic Biochem Physiol 84:196–214CrossRefGoogle Scholar
  9. 9. Accessed: 20 Sept 2014
  10. 10.
    Persoone G, Janssen C, De Coe W (1999) New microbiotests for routine toxicity screening and biomonitoring. Kluwer/Plenium Press, New York. ISBN 978-1-4615-4289-6Google Scholar
  11. 11.
    EC (2008) Council directive 2008/105/EC on Environmental Quality Standards (EQSs) in the field of water policy, amending and subsequently repealing council directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending directive 2000/60/EC of the European parliament and the council. Off J Eur Communities L348:84–97, 24 Dec 2008Google Scholar
  12. 12.
  13. 13.
    Rand GM, Wells PG, Mc Carty LS (1995) Introduction to aquatic toxicology. In: Rand GM (ed) Fundamentals in aquatic toxicology. Taylor and Francis, Washington, DCGoogle Scholar
  14. 14.
    Hopkin SP (1989) Ecophysiology of metals in terrestrial invertebrates. Elsevier Applied Science, London, p 366. ISBN 1-85166-312-6Google Scholar
  15. 15.
    Løkke H, van Gestel CAM (1998) Handbook of soil invertebrate toxicity tests. Wiley, ChichesterGoogle Scholar
  16. 16. Accessed 20 Sept 2014
  17. 17.
    Drobne D (1997) Terrestrial isopods – a good choice for toxicity testing of pollutants in the terrestrial environment. Environ Toxicol Chem 16:1159–1164Google Scholar
  18. 18.
    Warburg MR (1993) Evolutionary biology of land isopods. Springer, BerlinCrossRefGoogle Scholar
  19. 19.
    Paoletti MG, Hassall M (1999) Woodlice (Isopoda: Oniscidea): their potential for assessing sustainability and use as bioindicators. Agric Ecosyst Environ 74(1–3):157–165CrossRefGoogle Scholar
  20. 20.
    Kammenga JE, Dallinger R, Donker MH, Kohler H-R, Simonsen V, Triebskorn R, Weeks JM (2000) Biomarkers in terrestrial invertebrates for ecotoxicological soil risk assessment. Rev Environ Toxicol Chem 164:93–147Google Scholar
  21. 21.
    Roberts AP, Oris JT (2004) Multiple biomarker response in rainbow trout during exposure to hexavalent chromium. Comp Biochem Physiol 138C:221–228Google Scholar
  22. 22.
    Drobne D, Blazic M, Van Gestel CAM, Leser V, Zidar P, Jemec A, Trebse P (2008) Toxicity of imidacloprid to the terrestrial isopod Porcellio scaber (Isopoda, crustacea). Chemosphere 71:1326–1334CrossRefGoogle Scholar
  23. 23.
    Stanek K, Drobne D, Trebse P (2006) Linkage of biomarkers along levels of biological complexity in juvenile and adult diazinon fed terrestrial isopod (Porcellio scaber, Isopoda, Crustacea). Chemosphere 64:1745–1752CrossRefGoogle Scholar
  24. 24.
    Stanek K, Gabrijelcic E, Drobne D, Trebse P (2003) Inhibition of acetylcholinesterase activity in the terrestrial isopod Porcellio scaber as a biomarker of organophosphorus compounds in food. Arh Hig Rada Toksikol 54(3):183–188Google Scholar
  25. 25.
    Drobne D, Hopkin SP (1994) Ecotoxicological laboratory test for assessing the effects of chemicals on terrestrial isopods. Bull Environ Contam Toxicol 53:390–397CrossRefGoogle Scholar
  26. 26.
    Loureiro S, Sampaio A, Brandão A, Nogueira AJA, Soares AMVM (2006) Feeding behaviour of the terrestrial isopod Porcellionides pruinosus Brandt, 1833 (Crustacea, Isopoda) in response to changes in food quality and contamination. Sci Total Environ 369(1-3):119–128CrossRefGoogle Scholar
  27. 27.
    Zidar P, Drobne D, trus J, Van Gestel CAM, Donker M (2004) Food selection as a means of Cu intake reduction in the terrestrial isopod Porcellio scaber (Crustacea, Isopoda). Appl Soil Ecol 25:257–265CrossRefGoogle Scholar
  28. 28.
    Jemec A, Tišler T, Drobne D, Sepčić K, Fournier D, Trebše P (2007) Comparative toxicity of imidacloprid, of its commercial liquid formulation and of diazinon to a non-target arthropod, the microcrustacean Daphnia magna. Chemosphere 68(8):1408–1418CrossRefGoogle Scholar
  29. 29.
    Drobne D, Hopkin SP (1995) The toxicity of zinc to terrestrial isopods in a standard laboratory test. Ecotoxicol Environ Saf 31:1–6CrossRefGoogle Scholar
  30. 30.
    Drobne D, Jemec A, Pipan Tkalec Ž (2009) In vivo screening to determine hazards of nanoparticles: nanosized TiO2. Environ Pollut 157:1157–1164CrossRefGoogle Scholar
  31. 31.
    Jemec A, Drobne D, Remskar M, Sepcic K, Tisler T (2008) Effects of ingested nanosized titanium dioxide on terrestrial isopods Porcellio scaber. Environ Toxicol Chem 27:1904–1914CrossRefGoogle Scholar
  32. 32.
    Drobne D, Štrus J (1996) The effect of Zn on the digestive gland epithelium of Porcellio scaber (Isopoda, Crustacea). Pflugers Arch 431:247–248CrossRefGoogle Scholar
  33. 33.
    Drobne D, Drobne S (2005) Application of computer microscopy for histopathology in isopod toxicity studies. In: Ostrander GK (ed) Techniques in aquatic toxicology, vol 2. Taylor & Francis, Boca Raton, pp 137–146 (Chapter 7)Google Scholar
  34. 34.
    Lapanje A, Rupnik M, Drobne D (2007) Gut bacterial community structure (Porcellio scaber, Isopoda, Crustacea) as a measure of community level response to long-term and short-term metal pollution. Environ Toxicol Chem 26(4):755–763CrossRefGoogle Scholar
  35. 35.
    Lešer V, Drobne D, Vilhar B, Kladnik A, Žnidaršič N, Štrus J (2008) Epithelial thickness and lipid droplets in the hepatopancreas of Porcellio scaber (crustacea: isopoda) in different physiological conditions. Zoology 6(111):419–432Google Scholar
  36. 36.
    Žnidaršič N, Štrus J, Drobne D (2003) Ultrastructural alterations of the he-patopancreas in Porcellio scaber under stress. Environ Toxicol Pharmacol 13:161–174CrossRefGoogle Scholar
  37. 37.
    Lapanje A, Drobne D, Nolde N, Valant J, Muscet B, Leser V, Rupnik M (2008) Long-term Hg pollution induced Hg tolerance in the terrestrial isopod Porcellio scaber (Isopoda, Crustacea). Environ Pollut 153:537–547CrossRefGoogle Scholar
  38. 38.
    Nolde N, Drobne D, Valant J, Padovan I, Horvat M (2006) Lysosomal membrane stability in laboratory- and field-exposed terrestrial isopods Porcellio scaber (Isopoda, Crustacea). Environ Toxicol Chem 25:263–271CrossRefGoogle Scholar
  39. 39.
    Fischer E, Farkas S, Hornung E, Past T (1997) Sublethal effects on an organophosphorus insecticide, dimethoate, on the isopod Porcellio scaber Latr. Comp Biochem Physiol 116C(2):161–166Google Scholar
  40. 40.
    Ribeiro S, Guilhermino L, Sousa JP, Soares AMVM (1999) Novel bioassay based on acetylcholinesterase and lactate dehydrogenase activities to evaluate the toxicity of chemicals to soil isopods. Ecotoxicol Environ Saf 44:287–293CrossRefGoogle Scholar
  41. 41.
    Sousa JP, Loureiro S, Pieper S, Frost M, Kratz W, Nogueira AJA, Soares AMVM (2000) Soil and plant diet exposure routes and toxicokinetics of lindane in a terrestrial isopod. Environ Toxicol Chem 19(10):2557–2563CrossRefGoogle Scholar
  42. 42.
    Engenheiro EL, Hankard PK, Sousa JP, Lemos MF, Weeks JM, Soares AMVM (2005) Influence of dimethoate on acetylcholinesterase activity and locomotor function in terrestrial isopods. Environ Toxicol Chem 24(3):603–609CrossRefGoogle Scholar
  43. 43.
    Vink K, van Straalen NM (1999) Effects of benomyl and diazinon on isopod-mediated leaf soil litter decomposition in microcosms. Pedobiologia 43(4):345–359Google Scholar
  44. 44.
    Tišler T, Jemec A, Mozetič Vodopivec B, Trebše P (2009) Hazard identification of imidacloprid to aquatic environment. Chemosphere 76(7):907–914CrossRefGoogle Scholar
  45. 45.
    Anatra-Cordone M, Durkin P (2005) Imidacloprid. Human health assessment and ecological risk assessment – final report. Syracuse Environmental Research Associates, New York, SERA TR 05-43-24-03a, 28 Dec 2005Google Scholar
  46. 46.
    EPA (2004) Interim registration eligibility decision. Prevention pesticides and toxic substances (7508C). 738-R-04-006Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Olga Malev
    • 1
  • Roberta Sauerborn Klobučar
    • 2
  • Tatjana Tišler
    • 3
  • Damjana Drobne
    • 4
  • Polonca Trebše
    • 1
    • 5
  1. 1.Laboratory for Environmental ResearchUniversity of Nova GoricaNova GoricaSlovenia
  2. 2.Division of Materials Chemistry, Laboratory of Ichtiopatology – Biological MaterialsRuđer Bošković InstituteZagrebCroatia
  3. 3.National Institute of Chemistry, Laboratory for Environmental Sciences and EngineeringLjubljanaSlovenia
  4. 4.Biotechnical Faculty, Department of BiologyUniversity of LjubljanaLjubljanaSlovenia
  5. 5.Faculty of Health SciencesUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations