Effect of Concentration on the Interactions of Gold Nanoparticles with Model Cell Membranes: A QCM-D Study

  • Elaheh Kamaloo
  • Christina Bailey
  • Terri A. Camesano
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)


The increasing applications of nanotechnology in everyday life require consideration of their interactions with living cells. There are different physical and chemical properties affecting the interactions of nanoparticles with cells, such as NP size, nature of functionalization or stabilizing groups, concentration, and the environment in which nanoparticles are interacting with cells. In this review, we summarize some of our previous studies done on the interactions of gold nanoparticles with supported lipid bilayers (SLB; models for cell membranes). These studies have been done via Quartz Crystal Microbalance with Dissipation (QCM-D) and they include NPs ranging in size from 2 to 40 nm at several concentrations. Their interactions with a SLB composed of l-α-phosphatidylcholine were characterized. In order to better understand how NPs behave in the environment, these interactions were also studied in the presence of different types of natural organic matter (NOM), including Aldrich humic acid, Suwannee River humic acid standard, Suwannee River fulvic acid standard, and Elliot soil humic acid. Here we review our previous findings while focusing on an example of the effect of concentration on NP-SLB interaction.


Humic Acid Gold Nanoparticles Natural Organic Matter Quartz Crystal Microbalance With Dissipation Suwannee River Fulvic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported in part by the National Science Foundation (CBET 0966496). For help with concentration experiments, the authors thank Jeniece Macedonio for her contribution.


  1. 1.
    Barreto JA, O’Malley W, Kubeil M, Graham B, Stephan H, Spiccia L (2011) Nanomaterials: applications in cancer imaging and therapy. Adv Mater (Deerfield Beach, Fla) 23(12):H18–H40. doi: 10.1002/adma.201100140 CrossRefGoogle Scholar
  2. 2.
    Wang S, Lu W, Tovmachenko O, Rai US, Yu H, Ray PC (2008) Challenge in understanding size and shape dependent toxicity of gold nanomaterials in human skin keratinocytes. Chem Phys Lett 463(1–3):145–149. doi: 10.1016/j.cplett.2008.08.039 CrossRefGoogle Scholar
  3. 3.
    Yen H-J, Hsu S-H, Tsai C-L (2009) Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small (Weinheim an Der Bergstrasse, Germany) 5(13):1553–1561. doi: 10.1002/smll.200900126 CrossRefGoogle Scholar
  4. 4.
    Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8(7):543–557. doi: 10.1038/nmat2442 CrossRefGoogle Scholar
  5. 5.
    Tarantola M, Pietuch A, Schneider D, Rother J, Sunnick E, Rosman C, Janshoff A (2011) Toxicity of gold-nanoparticles: synergistic effects of shape and surface functionalization on micromotility of epithelial cells. Nanotoxicology 5(2):254–268. doi: 10.3109/17435390.2010.528847 CrossRefGoogle Scholar
  6. 6.
    Hou W-C, Moghadam BY, Corredor C, Westerhoff P, Posner JD (2012) Distribution of functionalized gold nanoparticles between water and lipid bilayers as model cell membranes. Environ Sci Technol 46(3):1869–1876. doi: 10.1021/es203661k CrossRefGoogle Scholar
  7. 7.
    Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Jahnen-Dechent W (2007) Size-dependent cytotoxicity of gold nanoparticles. Small (Weinheim an Der Bergstrasse, Germany) 3(11):1941–1949. doi: 10.1002/smll.200700378 CrossRefGoogle Scholar
  8. 8.
    Mironava T, Hadjiargyrou M, Simon M, Jurukovski V, Rafailovich MH (2010) Gold nanoparticles cellular toxicity and recovery: effect of size, concentration and exposure time. Nanotoxicology 4(1):120–137. doi: 10.3109/17435390903471463 CrossRefGoogle Scholar
  9. 9.
    Zhang Y, Chen Y, Westerhoff P, Crittenden J (2009) Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Res 43(17):4249–4257. doi: 10.1016/j.watres.2009.06.005 CrossRefGoogle Scholar
  10. 10.
    Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15(4):897–900. doi: 10.1021/bc049951i CrossRefGoogle Scholar
  11. 11.
    Stankus DP, Lohse SE, Hutchison JE, Nason J (2011) Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents. Environ Sci Technol 45(8):3238–3244. doi: 10.1021/es102603p CrossRefGoogle Scholar
  12. 12.
    Sutton R, Sposito G (2005) Molecular structure in soil humic substances: the new view. Crit Rev 510:9009–9015Google Scholar
  13. 13.
    Hardy GJ, Nayak R, Zauscher S (2013) Model cell membranes: techniques to form complex biomimetic supported lipid bilayers via vesicle fusion. Curr Opin Colloid Interface Sci 18(5):448–458. doi: 10.1016/j.cocis.2013.06.004 CrossRefGoogle Scholar
  14. 14.
    McCubbin GA, Praporski S, Piantavigna S, Knappe D, Hoffmann R, Bowie JH, Martin LL (2011) QCM-D fingerprinting of membrane-active peptides. Eur Biophys J : EBJ 40(4):437–446. doi: 10.1007/s00249-010-0652-5 CrossRefGoogle Scholar
  15. 15.
    Barenholz Y, Gibbes D, Litman BJ, Goll J, Thompson TE, Carlson RD (1977) A simple method for the preparation of homogeneous phospholipid vesicles. Biochemistry 16(12):2806–2810, Retrieved from
  16. 16.
    Keller CA, Glasmästar K, Zhdanov VP, Kasemo B (2000) Formation of supported membranes from vesicles. Phys Rev Lett 84(23):5443–5446, Retrieved from
  17. 17.
    Cremer PS, Boxer SG (1999) Formation and spreading of lipid bilayers on planar glass supports. J Phys Chem 291:2554–2559CrossRefGoogle Scholar
  18. 18.
    Mechler A, Praporski S, Atmuri K, Boland M, Separovic F, Martin LL (2007) Specific and selective peptide-membrane interactions revealed using quartz crystal microbalance. Biophys J 93(11):3907–3916. doi: 10.1529/biophysj.107.116525 CrossRefGoogle Scholar
  19. 19.
    Richter RP, Brisson AR (2005) Following the formation of supported lipid bilayers on mica: a study combining AFM, QCM-D, and ellipsometry. Biophys J 88(5):3422–3433. doi: 10.1529/biophysj.104.053728 CrossRefGoogle Scholar
  20. 20.
    Dixon MC (2008) Quartz crystal microbalance with dissipation monitoring: enabling real-time characterization of biological materials and their interactions. J Biomol Tech 19:151–158Google Scholar
  21. 21.
    Furman O, Usenko S, Lau BLT (2013) Relative importance of the humic and fulvic fractions of natural organic matter in the aggregation and deposition of silver nanoparticles. Environ Sci Technol 47(3):1349–1356. doi: 10.1021/es303275g Google Scholar
  22. 22.
    Vogt BD, Lin EK, Wu W, White CC (2004) Effect of film thickness on the validity of the Sauerbrey equation for hydrated polyelectrolyte films. J Phys Chem B 108:12685–12690CrossRefGoogle Scholar
  23. 23.
    Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit: JEM 13(5):1145–1155. doi: 10.1039/c0em00547a CrossRefGoogle Scholar
  24. 24.
    Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small (Weinheim an Der Bergstrasse, Germany) 4(1):26–49. doi: 10.1002/smll.200700595 CrossRefGoogle Scholar
  25. 25.
    Thomas CR, George S, Horst AM, Ji Z, Miller RJ, Peralta-Videa JR, Zink JI (2011) Nanomaterials in the environment: from materials to high-throughput screening to organisms. ACS Nano 5(1):13–20. doi: 10.1021/nn1034857 CrossRefGoogle Scholar
  26. 26.
    Soenen SJ, Manshian B, Montenegro JM, Amin F, Meermann B, Thiron T, Cornelissen M, Vanhaecke F, Doak S, Parak WJ, De Smedt S, Braeckmans K (2012) Cytotoxic effects of gold nanoparticles: A multiparametric study. ACS Nano 7:5767–5783CrossRefGoogle Scholar
  27. 27.
    Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Dawson K, Åberg C (2013) Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J Am Chem Soc 135(4):1438–1444. doi: 10.1021/ja309812z CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Elaheh Kamaloo
    • 1
  • Christina Bailey
    • 1
  • Terri A. Camesano
    • 1
  1. 1.Department of Chemical EngineeringWorcester Polytechnic InstituteWorcesterUSA

Personalised recommendations