Advertisement

Xanthomonas vesicatoria Specific Virus and Its Potential to Prevent Tomato Bacterial Spot Disease

  • Tinatin Sadunishvili
  • Edisher Kvesitadze
  • Giorgi Kvesitadze
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)

Abstract

The effect of prolonged and over usage of chemicals in crops production has resulted in human health hazards and pollution of environment and ground water. Identification of new sources for biological control of plant diseases is important for sustainable agriculture, ensuring food security, improving human health and rehabilitating the environment. The use of bacterial viruses or bacteriophages for bacterial diseases control is a fast expanding area of plant protection. Study of phages diversity, specificity, stability and efficacy are important for their application as biological means against the pathogens. The paper summarizes data on properties of bacteriophages specific to Xanthomonas vesicatoria strains spread in Georgia and efficacy to prevent tomato bacterial spot in laboratory conditions under artificial infection.

Keywords

Tomato bacterial disease Xanthomonas vesicatoria Xanthomonas vesicatoria specific phages Phage lytic cycle, efficacy 

Notes

Acknowledgments

This work was supported by ISTC G-1129 and GNSF-STCU 5001 grants.

References

  1. 1.
    Ackermann HW (2007) 5500 phages examined in the electron microscope. Arch Virol 152:227–243CrossRefGoogle Scholar
  2. 2.
    Balogh B, Jones JB, Momol MT, Olson SM, Obradovic A, King P et al (2003) Improved efficacy of newly formulated bacteriophages for management of bacterial spot on tomato. Plant Dis 87:949–954. doi: 10.1094/PDIS.2003.87.8.949 CrossRefGoogle Scholar
  3. 3.
    Adams MH (1959) Bacteriophages. Interscience Publishers, New YorkGoogle Scholar
  4. 4.
    Balogh B, Jones JB, Momol MT, Olson SM (2005) Persistence of bacteriophages as biocontrol agents in the tomato canopy. Proc Int Symp Tomato Dis, 1st, Orlando, FL.ISHS Acta Hortic 695:299 101–101Google Scholar
  5. 5.
    Balogh B (2006) Characterization and use of bacteriophages associated with citrus bacterial pathogens for disease control. PhD thesis University of Florida, Gainesville, 112pGoogle Scholar
  6. 6.
    Basit HA, Angle JS, Salem S, Gewaily EM (1992) Phage coating of soybean seeds reduces nodulation by indigenous soil bradyrhizobia. Can J Microbiol 38:1264–1269CrossRefGoogle Scholar
  7. 7.
    Bergamin FA, Kimati H (1981) Estudos sobre um bacteriofago isolado de Xanthomonas campestris. II. Seu emprego no controle de X. campestris e X. vesicatoria. Summa Phytopathol 7:35–43Google Scholar
  8. 8.
    Bouzar H, Jones JB, Stall RE, Louws FJ, Schneider M, Rademaker JLW et al (1999) Multiphasic analysis of Xanthomonads causing bacterial spot disease on tomato and pepper in the Caribbean and central America: evidence for common lineages within and between countries. Phytopathology 89:328–335CrossRefGoogle Scholar
  9. 9.
    Flaherty JE, Jones JB, Harbaugh BK, Somodi GC, Jackson LE (2000) Control of bacterial spot on tomato in the greenhouse and field with H-mutant bactetriophages. Hortic Sci 35:882–884Google Scholar
  10. 10.
    Flaherty JE, Jones JB, Harbaugh BK, Somodi GC, Jackson LE (2001) H-mutant bacteriophages as a potential biocontrol of bacterial blight of geranium. HortScience 36:98–100Google Scholar
  11. 11.
    Frampton RA, Pitman AR, Fineran PC (2012) Advances in bacteriophage mediated control of plant pathogens. Int J Microbiol 13:326452, 11 pagesGoogle Scholar
  12. 12.
    Gill JJ, Abedon TS (2003) Bacteriophage ecology and plants APSnet feature. http://www.apsnet.org/online/feature/phages/abedon.pdf
  13. 13.
    Greer GG (2005) Bacteriophage control of foodborne bacteria. Food Prot 68:1102–1111Google Scholar
  14. 14.
    Ghudumidze N, Chkonia I, Shapovalova N, Sadunishvili T, Meiphariani A (2006) Study of bacteriophages against the tomato with some bacterial etiologies. Proc Georgian Acad Sci Biol Ser B 4:21–24Google Scholar
  15. 15.
    Ghudumidze N, Shapovalova N, Giorkhelidze D, ZaaliShvili G, Sadunishvili T (2007) The morphological properties of phages specific for Xanthomonas vesicatoria tomato bacterial strains. Proc Georgian Acad Sci Biol Ser B 5:26–29Google Scholar
  16. 16.
    Ghudumidze N, Alavidze Z, Chkonia I, Eliashvili P, Giorgobiani N, Shapovalova N, Meiphariani A, Sadunishvili T (2007) Effective controlling of bacterial spot in tomato with bacteriophages. Proc Georgian Acad Sci Biol Ser B 5:8–11Google Scholar
  17. 17.
    Goldfarb DM (1961) Bacteriophagy. Med. Gaz, Moscow, p 295, In RussianGoogle Scholar
  18. 18.
    Gómez P, Buckling A (2011) Bacteria-phage antagonistic coevolution in soil. Science 332:106–109CrossRefGoogle Scholar
  19. 19.
    Hert AP (2001) Relative importance of bacteriocin-like genes in antagonism of T3 to T1 strains of Xanthomonas campestris pv. vesicatoria. MS thesis, University of Florida, GainesvilleGoogle Scholar
  20. 20.
    Iriarte FB, Balogh B, Momol MT, Smith LM, Wilson M, Jones JB (2007) Factors affecting survival of bacteriophage on tomato leaf surfaces. Appl Environ Microbiol 73(6):1704–1711CrossRefGoogle Scholar
  21. 21.
    Jackson LE (1989) Bacteriophage prevention and control of harmful plant bacteria. US patent 4,828,999Google Scholar
  22. 22.
    Jones JB (1991) Bacterial spot. In: Jones JB et al (eds) Compendium of tomato diseases. APS Press, St. Paul, p 27Google Scholar
  23. 23.
    Jones JB, Bouzar H, Somodi GC, Stall RE, Pernezny K, El-Morsy G, Scott JW (1998) Evidence for the preemptive nature of tomato race 3 of Xanthomonas campestris pv. vesicatoria in Florida. Phytopathology 88:33–38CrossRefGoogle Scholar
  24. 24.
    Jones JB, Jackson LE, Balogh B, Obradovich A, Iriarte FB, Momol T (2007) Bacteriophages for plant disease control. Annu Rev Phytopathol 45:245–262CrossRefGoogle Scholar
  25. 25.
    Jones JB, Vallad GE, Iriarte FB, Obradovich A et al (2012) Considerations for using bacteriophages for plant disease control. Bacteriophage 2:208–214CrossRefGoogle Scholar
  26. 26.
    Koller W (1998) Chemical approaches to managing plant pathogens. In: Ruberson JB (ed) Handbook of integrated pest management. Dekker, New YorkGoogle Scholar
  27. 27.
    Kutter E, Sulakvelidze A (2005) Bacteriophages:biology and applications. CRC Press, Boca Raton, 500pGoogle Scholar
  28. 28.
    Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. Nat Rev Microbiol 8:317–327CrossRefGoogle Scholar
  29. 29.
    Leboeuf J, Cuppels D, Dick J, Pitblado R, Poewen St, Celetti M (2005) Bacterial diseases of tomato; Bacterial Spot, Bacterial Speck, Bacterial Canker. Queen’s Printer for Ontario. Factsheet ISSN:1198-712X, 363–365Google Scholar
  30. 30.
    Louws EJ, Wilson M, Cambell HL, Cuppels DA, Jones JB, Shoemaker PB, Sahin F, Miller SA (2001) Field control of bacterial spot and bacterial speck of tomato using a plant activator. Plant Dis 85:481–488CrossRefGoogle Scholar
  31. 31.
    Mao W, Lewis JA, Lumsden RD et al (1998) Crop protection. Crop Prot 17:535–542CrossRefGoogle Scholar
  32. 32.
    McManus PS, Stockwell VO, Sundin GW, Jones AL (2002) Antibiotic use in plant agriculture. Annu Rev Phytopathol 40:443–465CrossRefGoogle Scholar
  33. 33.
    Momol MT, Jones JB, Olson SM, Obradovic A, Balogh B, King P (2002) Integrated management of bacterial spot on tomato in Florida. Rep PP110, EDIS. Inst. Food Agric. Sci., Univ. FLGoogle Scholar
  34. 34.
    Moore ES (1926) D’Herelle’s bacteriophage in relation to plant parasites. S Afr J Sci 23:306–310Google Scholar
  35. 35.
    Obradovich A, Jones J, Momol M et al (2004) Management of tomato bacterial spot in the field by foliar applications of bacteriophages and SAR inducers. Plant Dis 88:736–740CrossRefGoogle Scholar
  36. 36.
    Pal KK, McSpadden G (2011) Biological control of plant pathogens. The Plant Health Instructor, 10, 1094/PHI-A-2006-1117-02:1–25Google Scholar
  37. 37.
    Sadunishvili T, Giorgobiani N, Amashukeli N et al (2012) Strategy of biological control of phytopathogenic bacteria in Georgia. Ann Agrar Sci 10:62–66Google Scholar
  38. 38.
    Sulakvelidze A, Barrow P (2004) Phage therapy in animals and agribusiness. Bacteriophages Biol Appl 335:380Google Scholar
  39. 39.
    Svircev AM, Lehman SM, Kim WS, Barszcz E et al. (2006) Control of the fire blight pathogen with bacteriophages. In: Zeller W, Ulrich C (eds) Proceedings of the 1st international symposium on biological control of bacterial plant diseases, 408: 259–261Google Scholar
  40. 40.
    Tanaka H, Negishi H, Maeda H (1990) Control of tobacco bacterial wilt by an avirulent strain of Pseudomonas solanacearum M4S and its bacteriophage. Ann Phytopathol Soc Jpn 56:243–244CrossRefGoogle Scholar
  41. 41.
    Thayer PL, Stall RE (1961) A survey of Xanthomonas vesicatoria resistance to streptomycin. Proc Fla Hort Soc 75:163–165Google Scholar
  42. 42.
    Thomas RC (1935) A bacteriophage in relation to Stewart’s disease of corn. Phytopathology 25:371–372Google Scholar
  43. 43.
    Wilson MS, Hirano S, Lindow SE (1999) Location and survival of leaf-associated bacteria in relation to pathogenicity and potential for growth within the leaf. Appl Environ Microbiol 65:1435–1443Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Tinatin Sadunishvili
    • 1
  • Edisher Kvesitadze
    • 2
  • Giorgi Kvesitadze
    • 1
    • 3
  1. 1.Durmishidze Institute of Biochemistry and BiotechnologyAgricultural University of GeorgiaTbilisiGeorgia
  2. 2.Georgian Technical UniversityTbilisiGeorgia
  3. 3.Georgian National Academy of SciencesTbilisiGeorgia

Personalised recommendations