Advertisement

Quasi-Fulleranes and Fulleranes as Main Products of Fullerenizasion of Molecules of Benzene, Toluene and Pyridine

  • Oleksii Kharlamov
  • Marina Bondarenko
  • Ganna Kharlamova
  • Veniamin Fomenko
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)

Abstract

Intensive 25 year attempts of researchers with use of superhigh pressures and temperatures to receive maximum saturated by hydrogen fullerane (С60Н60) by means of heterophases reactions of hydrogenation of fullerite (or fullerene) have appeared completely unsuccessful. This fact from the chemical point of view was quite predicted: in heterophase reactions limiting always is the stage of diffusion of one of reagents (in particular, hydrogen) through a layer of the resultant product (in particular, fullerane) therefore the particle of a final product (fullerane) is always non-uniform on composition. Moreover, defullerenization of molecules С60 and С60Нх at temperatures higher 400 °C is observed as at hydrogenation of first, and dehydrogenation of second. Herein is described a new (author method) method of pyrolysis as process of fullerenization (transformation of organic molecules in the closed molecules of carbon and their hydrides) of molecules of benzene, toluene and pyridine, which has allowed to obtain simultaneously and carbon molecules, and them hydrides. Еquiatomic composition fullerane С60Н60, quasi-fulleranes (CnHn-6–CnHn−2 (n = 20–46)) and quasi-fullerenes (C48, C40, C42) as well as small carbon molecules (C3–C11) are detected only in mass spectra of products of fullerenization of organic molecules. In products of fullerenization of pyridine molecules (C5H5N) are detected new heteroatomic molecules such as hydrogenated and hydroxylated azafullerenes (С35N5)H9, (С45N5)(ОН)3Н14 and (С49N11)(ОН)5Н18 as well as homoatomic molecules С60, С48 and С3–С18. This method allows obtain fulleranes and quasi-fulleranes in gramme quantities.

Keywords

Fullerenization Equiatomic fullerane Quasi-fulleranes Fullerenes Quasi-fullerenes Pyrolysis 

References

  1. 1.
    Haufler RE, Conceicao J, Chibante LPF et al (1990) Efficient production of C60 (buckminsterfullerene), C60H36, and the solvated buckide ion. J Phys Chem 94(24):8634–8636CrossRefGoogle Scholar
  2. 2.
    Cataldo F, Iglesias-Groth S (2010) Fulleranes: the hydrogenated fullerenes. Springer, Dordrecht, p 278CrossRefGoogle Scholar
  3. 3.
    Goldshleger NF, Moravsky AP (1997) Hydrides of the fullerenes. Usp Khim 66(4):353–375CrossRefGoogle Scholar
  4. 4.
    Kharlamov AI, Bondarenko ME, Kirillova NV (2012) New method for synthesis of fullerenes and fullerene hydrides from benzene. Russ J Appl Chem 85(2):233–238CrossRefGoogle Scholar
  5. 5.
    Luzan SM, Tsybin YO, Talyzin AV (2011) Reaction of C60 with hydrogen gas: in situ monitoring and pathways. J Phys Chem C 115(23):11484–11492CrossRefGoogle Scholar
  6. 6.
    Luzan S (2012) Materials for hydrogen storage and synthesis of new materials by hydrogenation. PhD thesis, Umeå University, Umeå, p 85Google Scholar
  7. 7.
    Peera A, Saini RK, Alemany LB et al (2003) Formation, isolation, and spectroscopic properties of some isomers of C60H38, C60H40, C60H42 and C60H44. Eur J Org Chem 21:4140–4145CrossRefGoogle Scholar
  8. 8.
    Peera АА (2004) Fullerene hydrides and studies toward the synthesis of fulvalenes. PhD thesis, HoustonGoogle Scholar
  9. 9.
    Shigematsu K, Abe K, Mitani M, Tanaka K (1993) Catalytic hydrogenation of fullerenes in the presence of metal catalysts in toluene solution. Fullerene Sci Technol 1(3):309–318CrossRefGoogle Scholar
  10. 10.
    Talyzin AV, Dzwilewski A, Sundqvist B et al (2006) Hydrogenation of C60 at 2 GPa pressure and high temperature. Chem Phys 325(2):445–451CrossRefGoogle Scholar
  11. 11.
    Zhang JP, Wang NX, Yang YX, Yu AG (2004) Hydrogenation of [60] fullerene with lithium in aliphatic amine. Carbon 42(3):667–691CrossRefGoogle Scholar
  12. 12.
    Kharlamova G, Kharlamov O, Bondarenko M (2013) Hetero-carbon: heteroatomic molecules and nano-structures of carbon. Chap. 31. In: Vaseashta A, Khudaverdyan S (eds) Advanced sensors for safety and security, NATO science for peace and security series B: physics and biophysics. Springer, Dordrecht, pp 339–357Google Scholar
  13. 13.
    Kharlamova G, Kharlamov O, Bondarenko M (2015) Nanosensors in systems of ecological security. In: Bonča J, Kruchinin S (eds) Nanotechnology in the security systems. NATO science for peace and security series C: environmental security. Springer, Dordrecht, pp 231–242, Chap. 20Google Scholar
  14. 14.
    Kroto HW, Heath JR, O’Brien SC et al (1985) C60: buckminsterfullerene. Nature 318:162–163CrossRefGoogle Scholar
  15. 15.
    Rohlfing C, Kaldor J (1984) Production and characterization of supersonic carbon cluster beams. Chem Phys 81:3322–3330Google Scholar
  16. 16.
    Siegmann K, Hepp H, Sattler K (1995) Multiphoton ionization mass spectroscopy of fullerenes in methane diffusion flames. Mat Res Soc Proc 359:517Google Scholar
  17. 17.
    Siegmann K, Hepp H, Sattler K (1996) High-resolution height-profile analysis and laser-ionization characterization of a wide range of fullerenes in laminar diffusion flames. Surf Rev Lett 3:741CrossRefGoogle Scholar
  18. 18.
    Wurz P, Lykke KR, Pellin MJ, Gruen DM (1992) Characterization of fullerenes by laser-based mass spectrometry. Vacuum 43(5–7l):381–385CrossRefGoogle Scholar
  19. 19.
    Kratschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347:354–358CrossRefGoogle Scholar
  20. 20.
    Howard JB, McKinnon JT, Makarovsky Y et al (1991) Fullerenes C60 and C70 in flames. Nature 352:139–141CrossRefGoogle Scholar
  21. 21.
    Kroto HW (1990) C60 fullerenes, giant fullerenes and soot. Pure Appl Chem 62:407–415CrossRefGoogle Scholar
  22. 22.
    Paquette LA, Ternansky RJ, Balogh DW, Kentgen G (1983) Total synthesis of dodecahedrane. J Am Chem Soc 105(16):5446–5450CrossRefGoogle Scholar
  23. 23.
    Henderson CC, Cahill PA (1993) C60H2–synthesis of the simplest C60 hydrocarbon derivative. Science 259(5103):1885–1887CrossRefGoogle Scholar
  24. 24.
    Ballenweg S, Gleiter R, Kratschmer W (1993) Hydrogenation of buckminsterfullerene C-60 via hydrozirconation – a new way to organofullerenes. Tetrahedron Lett 34(23):3737–3740CrossRefGoogle Scholar
  25. 25.
    Cataldo F (2004) Cyanopolyynes: carbon chains formation in a carbon arc mimicking the formation of carbon chains in the circumstellar medium. Int J Astrobiol 3:237–246CrossRefGoogle Scholar
  26. 26.
    Kharlamov A, Bondarenko M, Kharlamova G (2013) Mass spectrometric research of hydrogenated molecules of carbon as products of pyrolysis of benzene and pyridine vapours. Chem Mater Eng 1(4):122–131Google Scholar
  27. 27.
    Kharlamov A, Bondarenko M, Kharlamova G (2013) Hydrogenated molecules of carbon as products of new pyrolysis method of toluene, xylene and ethanol. Univers J Chem 1(3):102–112Google Scholar
  28. 28.
    Kharlamov A, Bondarenko M, Kharlamova G et al (2013) A new method of synthesis carbon with onion-like structure with high (10–13 %) content of nitrogen from pyridine. Univers J Mater Sci 1(2):78–86Google Scholar
  29. 29.
    Kharlamov A, Kharlamova G, Bondarenko M, Fomenko V (2013) Joint synthesis of small carbon molecules (C3–C11), quasi-fullerenes (C40, C48, C52) and their hydrides. Chem Eng Sci 1(3):32–40CrossRefGoogle Scholar
  30. 30.
    Kharlamov A, Kharlamova G, Bondarenko M, Fomenko V (2013) New method for generation of carbon molecules and clusters. Open J Synth Theory Appl 2(1):38–45CrossRefGoogle Scholar
  31. 31.
    Kharlamov AI, Kharlamova GA, Bondarenko ME (2013) New products of a new method for pyrolysis of pyridine. Russ J Appl Chem 86(2):167–175CrossRefGoogle Scholar
  32. 32.
    Kharlamov AI, Kharlamova GA, Bondarenko ME (2013) New low-temperature method for joint synthesis of C60 fullerene and new carbon molecules in the form of C3–C15 and quasi-fullerenes C48, C42, C40. Russ J Appl Chem 86(8):1174–1183CrossRefGoogle Scholar
  33. 33.
    Kharlamov AI, Kharlamova GA, Bondarenko ME (2013) Preparation of onion-like carbon with high nitrogen content (∼15 %) from pyridine. Russ J Appl Chem 86(10):1493–1503CrossRefGoogle Scholar
  34. 34.
    Kharlamov O, Kharlamova G, Bondarenko M, Fomenko V (2013) Small carbon molecules and quasi-fullerenes as products of new method of hydrocarbons pyrolysis. Chap. 30. In: Vaseashta A, Khudaverdyan S (eds) Advanced sensors for safety and security, NATO science for peace and security series B: physics and biophysics. Springer, Dordrecht, pp 329–338Google Scholar
  35. 35.
    Kharlamov O, Bondarenko M, Kharlamova G et al (2015) Nanoecological security of foodstuffs and human. Chap. 19. In: Bonča J, Kruchinin S (eds) Nanotechnology in the security systems, NATO science for peace and security series C: environmental security. Springer, Dordrecht, pp 215–229Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Oleksii Kharlamov
    • 1
  • Marina Bondarenko
    • 1
  • Ganna Kharlamova
    • 2
  • Veniamin Fomenko
    • 3
  1. 1.Frantsevich Institute for Problems of Materials Science of NASUKievUkraine
  2. 2.Taras Shevchenko National University of KyivKyivUkraine
  3. 3.National University of Food TechnologiesKievUkraine

Personalised recommendations