Skip to main content

Atomic Force Microscopy Tools to Characterize the Physicochemical and Mechanical Properties of Pathogens

  • Conference paper
Nanotechnology to Aid Chemical and Biological Defense

Abstract

Microbial pathogens are highly complex and heterogeneous systems. Cell populations generally contain subgroups of cells which exhibit differences in growth rate, as well as resistance to stress and drug treatment. In addition, individual cells are spatially organized and heterogeneous; this cellular heterogeneity is used to perform key functions. This complexity emphasizes the need for single-cell analysis techniques in microbial research.

With its ability to image and manipulate cellular systems at nanometer resolution and in physiological conditions, atomic force microscopy (AFM) offers unprecedented opportunities in microbiology and contributes to the birth of a new field called ‘microbial nanoscopy’. Using topographic imaging, researchers can visualize the ultrastructure of live cells and their subtle modification under activity of antimicrobial agents. Force spectroscopy with tips that bear bioligands offers a means to probe the localization and adhesion of single receptors on cells, such as cell adhesion proteins and antibiotic binding sites. Single-cell force spectroscopy quantifies the forces driving microbe-microbe, microbe-solid, and microbe-host interactions. In this chapter, we will discuss how we can use these AFM modalities in microbiology. We will present some recent breakthroughs in pathogen research, emphasizing the potential of various AFM modes for studying cell adhesion and biofilm formation in Candida, Aspergillus and Staphylococcus species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Article  Google Scholar 

  2. Douglas LJ (2003) Candida biofilms and their role in infection. Trends Microbiol 11:30–36

    Article  Google Scholar 

  3. Finkel JS, Mitchell AP (2011) Genetic control of Candida albicans biofilm development. Nat Rev Microbiol 9:109–118

    Article  Google Scholar 

  4. Foster TJ, Geoghegan JA, Ganesh VK et al (2014) Adhesion, invasion and evasion: the many functions of the surface proteins of staphylococcus aureus. Nat Rev Microbiol 12:49–62

    Article  Google Scholar 

  5. Kolter R, Greenberg EP (2006) Microbial sciences: the superficial life of microbes. Nature 441:300–302

    Article  Google Scholar 

  6. Otto M (2009) Staphylococcus epidermidis – the ‘accidental’ pathogen. Nat Rev Microbiol 7:555–567

    Article  Google Scholar 

  7. Uckay I, Pittet D, Vaudaux P et al (2009) Foreign body infections due to Staphylococcus epidermidis. Ann Med 41:109–119

    Article  Google Scholar 

  8. Pfaller MA, Diekema DJ (2007) Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20:133–163

    Article  Google Scholar 

  9. Pfaller MA, Espinel-Ingroff A, Canton E et al (2012) Wild-type MIC distributions and epidemiological cutoff values for amphotericin B, flucytosine, and itraconazole and Candida spp. as determined by CLSI broth microdilution. J Clin Microbiol 50:2040–2046

    Article  Google Scholar 

  10. Roetzer A, Gabaldon T, Schuller C (2011) From Saccharomyces cerevisiae to Candida glabrata in a few easy steps: important adaptations for an opportunistic pathogen. FEMS Microbiol Lett 314:1–9

    Article  Google Scholar 

  11. Calderone R (2004) The 7th conference on Candida and Candidiasis, Austin, Texas, USA, March 18–22, 2004. FEMS Yeast Res 4:885–886

    Article  Google Scholar 

  12. Odds FC, Brown AJ, Gow NA (2003) Antifungal agents: mechanisms of action. Trends Microbiol 11:272–279

    Article  Google Scholar 

  13. Pfaller MA (2012) Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment. Am J Med 125:S3–S13

    Article  Google Scholar 

  14. Gow NAR, van de Veerdonk FL, Brown AJP et al (2012) Candida albicans morphogenesis and host defense: discriminating invasion from colonization. Nat Rev Microbiol 10:112–122

    Google Scholar 

  15. Netea MG, Gow NA, Munro CA et al (2006) Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J Clin Invest 116:1642–1650

    Article  Google Scholar 

  16. Netea MG, Brown GD, Kullberg BJ et al (2008) An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol 6:67–78

    Article  Google Scholar 

  17. Mahdavinia M, Grammer LC (2012) Management of allergic bronchopulmonary aspergillosis: a review and update. Ther Adv Respir Dis 6:173–187

    Article  Google Scholar 

  18. Beauvais A, Fontaine T, Aimanianda V et al (2014) Aspergillus cell wall and biofilm. Mycopathologia 178:371–377

    Article  Google Scholar 

  19. Aimanianda V, Bayry J, Bozza S et al (2009) Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature 460:1117–1121

    Article  Google Scholar 

  20. Fontaine T, Delangle A, Simenel C et al (2011) Galactosaminogalactan, a new immunosuppressive polysaccharide of Aspergillus fumigatus. PLoS Pathog 7:e1002372

    Article  Google Scholar 

  21. Herman P, El-Kirat-Chatel S, Beaussart A et al (2014) The binding force of the staphylococcal adhesin SdrG is remarkably strong. Mol Microbiol 93:356–368

    Article  Google Scholar 

  22. Foster TJ (2005) Immune evasion by staphylococci. Nat Rev Microbiol 3:948–958

    Article  Google Scholar 

  23. Frisbie CD, Rozsnyai LF, Noy A et al (1994) Functional group imaging by chemical force microscopy. Science 265:2071–2074

    Article  Google Scholar 

  24. Hinterdorfer P, Dufrene YF (2006) Detection and localization of single molecular recognition events using atomic force microscopy. Nat Methods 3:347–355

    Article  Google Scholar 

  25. Ahmad SF, Chtcheglova LA, Mayer B et al (2011) Nanosensing of Fcgamma receptors on macrophages. Anal Bioanal Chem 399:2359–2367

    Article  Google Scholar 

  26. Alsteens D, Garcia MC, Lipke PN et al (2010) Force-induced formation and propagation of adhesion nanodomains in living fungal cells. Proc Natl Acad Sci U S A 107:20744–20749

    Article  Google Scholar 

  27. Chtcheglova LA, Waschke J, Wildling L et al (2007) Nano-scale dynamic recognition imaging on vascular endothelial cells. Biophys J 93:L11–L13

    Article  Google Scholar 

  28. Dupres V, Alsteens D, Wilk S et al (2009) The yeast Wsc1 cell surface sensor behaves like a nanospring in vivo. Nat Chem Biol 5:857–862

    Article  Google Scholar 

  29. Kim H, Arakawa H, Hatae N et al (2006) Quantification of the number of EP3 receptors on a living CHO cell surface by the AFM. Ultramicroscopy 106:652–662

    Article  Google Scholar 

  30. Radmacher M, Tillamnn RW, Fritz M et al (1992) From molecules to cells: imaging soft samples with the atomic force microscope. Science 257:1900–1905

    Article  Google Scholar 

  31. Labernadie A, Thibault C, Vieu C et al (2010) Dynamics of podosome stiffness revealed by atomic force microscopy. Proc Natl Acad Sci U S A 107:21016–21021

    Article  Google Scholar 

  32. El-Kirat-Chatel S, Dufrene YF (2012) Nanoscale imaging of the Candida-macrophage interaction using correlated fluorescence-atomic force microscopy. ACS Nano 6:10792–10799

    Google Scholar 

  33. Schaer-Zammaretti P, Ubbink J (2003) Imaging of lactic acid bacteria with AFM-elasticity and adhesion maps and their relationship to biological and structural data. Ultramicroscopy 97:199–208

    Article  Google Scholar 

  34. Dague E, Jauvert E, Laplatine L et al (2011) Assembly of live micro-organisms on microstructured PDMS stamps by convective/capillary deposition for AFM bio-experiments. Nanotechnology 22:395102

    Article  Google Scholar 

  35. Dufrêne YF (2008) Atomic force microscopy and chemical force microscopy of microbial cells. Nat Protoc 3:1132–1138

    Article  Google Scholar 

  36. Kasas S, Ikai A (1995) A method for anchoring round shaped cells for atomic force microscope imaging. Biophys J 68:1678–1680

    Article  Google Scholar 

  37. Bizerra FC, Melo AS, Katchburian E et al (2011) Changes in cell wall synthesis and ultrastructure during paradoxical growth effect of caspofungin on four different Candida species. Antimicrob Agents Chemother 55:302–310

    Article  Google Scholar 

  38. Chaffin WL, Lopez-Ribot JL, Casanova M et al (1998) Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol Mol Biol Rev 62:130–180

    Google Scholar 

  39. Dunyach C, Drakulovski P, Bertout S et al (2011) Fungicidal activity and morphological alterations of Candida albicans induced by echinocandins: study of strains with reduced caspofungin susceptibility. Mycoses 54:e62–e68

    Article  Google Scholar 

  40. Letscher-Bru V, Herbrecht R (2003) Caspofungin: the first representative of a new antifungal class. J Antimicrob Chemother 51:513–521

    Article  Google Scholar 

  41. El-Kirat-Chatel S, Beaussart A, Alsteens D et al (2013) Nanoscale analysis of caspofungin-induced cell surface remodelling in Candida albicans. Nanoscale 5:1105–1115

    Article  Google Scholar 

  42. Dague E, Alsteens D, Latgé JP et al (2008) High-resolution cell surface dynamics of germinating Aspergillus fumigatus conidia. Biophys J 94:656–660

    Article  Google Scholar 

  43. Annaix V, Bouchara JP, Larcher G et al (1992) Specific binding of human fibrinogen fragment D to Aspergillus fumigatus conidia. Infect Immun 60:1747–1755

    Google Scholar 

  44. Sheppard DC (2011) Molecular mechanism of Aspergillus fumigatus adherence to host constituents. Curr Opin Microbiol 14:375–379

    Article  Google Scholar 

  45. Beever RE, Dempsey GP (1978) Function of rodlets on the surface of fungal spores. Nature 272:608–661O

    Article  Google Scholar 

  46. Cole GT, Sekiya T, Kasai R et al (1979) Surface ultrastructure and chemical composition of the cell walls of conidial fungi. Exp Mycol 3:132–156

    Article  Google Scholar 

  47. Wessels JGH (1996) Fungal hydrophobins: proteins that function at an interface. Trends Plant Sci 1:9–15

    Article  Google Scholar 

  48. Filler SG, Sheppard DC (2006) Fungal invasion of normally non-phagocytic host cells. PLoS Pathog 2:1099–1105

    Google Scholar 

  49. Walsh C (2000) Molecular mechanisms that confer antibacterial drug resistance. Nature 406:775–781

    Article  Google Scholar 

  50. Francius G, Domenech O, Mingeot-Leclercq MP et al (2008) Direct observation of Staphylococcus aureus cell wall digestion by lysostaphin. J Bacteriol 190:7904–7909

    Article  Google Scholar 

  51. Hoyer LL (2001) The ALS gene family of Candida albicans. Trends Microbiol 9:176–180

    Article  Google Scholar 

  52. Lipke PN, Garcia MC, Alsteens D et al (2012) Strengthening relationships: amyloids create adhesion nanodomains in yeasts. Trends Microbiol 20:59–65

    Article  Google Scholar 

  53. Alsteens D, Dupres V, Klotz SA et al (2009) Unfolding individual Als5p adhesion proteins on live cells. ACS Nano 3:1677–1682

    Article  Google Scholar 

  54. Oberhauser AF, Marszalek PE, Erickson HP et al (1998) The molecular elasticity of the extracellular matrix protein tenascin. Nature 393:181–185

    Article  Google Scholar 

  55. Rief M, Gautel M, Oesterhelt F et al (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112

    Article  Google Scholar 

  56. Dranginis AM, Rauceo JM, Coronado JE et al (2007) A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions. Microbiol Mol Biol Rev 71:282–294

    Article  Google Scholar 

  57. Gregori C, Glaser W, Frohner IE et al (2011) Efg1 controls caspofungin-induced cell aggregation of Candida albicans through the adhesin Als1. Eukaryot Cell 10:1694–1704

    Article  Google Scholar 

  58. Hazen BW, Hazen KC (1988) Dynamic expression of cell surface hydrophobicity during initial yeast cell growth and before germ tube formation of Candida albicans. Infect Immun 56:2521–2525

    Google Scholar 

  59. Liu Y, Filler SG (2011) Candida albicans Als3, a multifunctional adhesin and invasin. Eukaryot Cell 10:168–173

    Article  Google Scholar 

  60. Nobile CJ, Schneider HA, Nett JE et al (2008) Complementary adhesin function in C. albicans biofilm formation. Curr Biol 18:1017–1024

    Article  Google Scholar 

  61. Coleman DA, Oh SH, Zhao X et al (2009) Monoclonal antibodies specific for Candida albicans Als3 that immunolabel fungal cells in vitro and in vivo and block adhesion to host surfaces. J Microbiol Methods 78:71–78

    Article  Google Scholar 

  62. Beaussart A, Alsteens D, El-Kirat-Chatel S et al (2012) Single-molecule imaging and functional analysis of Als adhesins and mannans during Candida albicans morphogenesis. ACS Nano 6:10950–10964

    Google Scholar 

  63. Mil-Homens D, Fialho AM (2011) Trimeric autotransporter adhesins in members of the Burkholderia cepacia complex: a multifunctional family of proteins implicated in virulence. Front Cell Infect Microbiol 1:13

    Article  Google Scholar 

  64. Mil-Homens D, Fialho AM (2012) A BCAM0223 mutant of Burkholderia cenocepacia is deficient in hemagglutination, serum resistance, adhesion to epithelial cells and virulence. PLoS One 7:e41747

    Article  Google Scholar 

  65. Mil-Homens D, Rocha EPC, Fialho AM (2010) Genome-wide analysis of DNA repeats in Burkholderia cenocepacia J2315 identifies a novel adhesin-like gene unique to epidemic-associated strains of the ET-12 lineage. Microbiology 156:1084–1096

    Article  Google Scholar 

  66. El-Kirat-Chatel S, Mil-Homens D, Beaussart A et al (2013) Single-molecule atomic force microscopy unravels the binding mechanism of a Burkholderia cenocepacia trimeric autotransporter adhesin. Mol Microbiol 89:649–659

    Article  Google Scholar 

  67. Tripathi P, Beaussart A, Alsteens D et al (2013) Adhesion and nanomechanics of pili from the probiotic Lactobacillus rhamnosus GG. ACS Nano 7:3685–3697

    Article  Google Scholar 

  68. Busscher HJ, Norde W, Van Der Mei HC (2008) Specific molecular recognition and nonspecific contributions to bacterial interaction forces. Appl Environ Microbiol 74:2559–2564

    Article  Google Scholar 

  69. Busscher HJ, van der Mei HC (2012) How do bacteria know they are on a surface and regulate their response to an adhering state? PLoS Pathog 8:e1002440

    Article  Google Scholar 

  70. Benoit M, Gabriel D, Gerisch G et al (2000) Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nat Cell Biol 2:313–317

    Article  Google Scholar 

  71. Benoit M, Gaub HE (2002) Measuring cell adhesion forces with the atomic force microscope at the molecular level. Cells Tissues Organs 172:174–189

    Article  Google Scholar 

  72. Friedrichs J, Helenius J, Muller DJ (2010) Quantifying cellular adhesion to extracellular matrix components by single-cell force spectroscopy. Nat Protoc 5:1353–1361

    Article  Google Scholar 

  73. Helenius J, Heisenberg CP, Gaub HE et al (2008) Single-cell force spectroscopy. J Cell Sci 121:1785–1791

    Article  Google Scholar 

  74. Stewart MP, Hodel AW, Spielhofer A et al (2013) Wedged AFM-cantilevers for parallel plate cell mechanics. Methods 60:186–194

    Article  Google Scholar 

  75. Lee H, Dellatore SM, Miller WM et al (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430

    Article  Google Scholar 

  76. Alsteens D, Beaussart A, Derclaye S et al (2013) Single-cell force spectroscopy of Als-mediated fungal adhesion. Anal Methods 5:3657–3662

    Article  Google Scholar 

  77. Alsteens D, Van Dijck P, Lipke PN et al (2013) Quantifying the forces driving cell-cell adhesion in a fungal pathogen. Langmuir 29:13473–13480

    Article  Google Scholar 

  78. Elias S, Banin E (2012) Multi-species biofilms: living with friendly neighbors. FEMS Microbiol Rev 36:990–1004

    Article  Google Scholar 

  79. Harriott MM, Noverr MC (2009) Candida albicans and Staphylococcus aureus form polymicrobial biofilms: effects on antimicrobial resistance. Antimicrob Agents Chemother 53:3914–3922

    Article  Google Scholar 

  80. Hogan DA, Kolter R (2002) Pseudomonas-Candida interactions: an ecological role for virulence factors. Science 296:2229–2232

    Article  Google Scholar 

  81. Lynch AS, Robertson GT (2008) Bacterial and fungal biofilm infections. Annu Rev Med 59:415–428

    Article  Google Scholar 

  82. Carlson E (1983) Effect of strain of Staphylococcus aureus on synergism with Candida albicans resulting in mouse mortality and morbidity. Infect Immun 42:285–292

    Google Scholar 

  83. Morales DK, Hogan DA (2010) Candida albicans interactions with bacteria in the context of human health and disease. PLoS Pathog 6:1–4

    Google Scholar 

  84. Shirtliff ME, Peters BM, Jabra-Rizk MA (2009) Cross-kingdom interactions: Candida albicans and bacteria. FEMS Microbiol Lett 299:1–8

    Article  Google Scholar 

  85. Beaussart A, El-Kirat-Chatel S, Herman P et al (2013) Single-cell force spectroscopy of probiotic bacteria. Biophys J 104:1886–1892

    Article  Google Scholar 

  86. Beaussart A, El-Kirat-Chatel S, Sullan RMA et al (2014) Quantifying the forces guiding microbial cell adhesion using single-cell force spectroscopy. Nat Protoc 9:1049–1055

    Article  Google Scholar 

  87. Beaussart A, Herman P, El-Kirat-Chatel S et al (2013) Single-cell force spectroscopy of the medically important Staphylococcus epidermidis-Candida albicans interaction. Nanoscale 5:10894–10900

    Article  Google Scholar 

  88. Alsteens D, Trabelsi H, Soumillion P et al (2013) Multiparametric atomic force microscopy imaging of single bacteriophages extruding from living bacteria. Nat Commun 4:1–7

    Article  Google Scholar 

  89. Fantner GE, Barbero RJ, Gray DS et al (2010) Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy. Nat Nanotechnol 5:280–285

    Article  Google Scholar 

  90. Longo G, Alonso-Sarduy L, Rio LM et al (2013) Rapid detection of bacterial resistance to antibiotics using AFM cantilevers as nanomechanical sensors. Nat Nanotechnol 8:522–526

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sofiane El-Kirat-Chatel or Audrey Beaussart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

El-Kirat-Chatel, S., Beaussart, A. (2015). Atomic Force Microscopy Tools to Characterize the Physicochemical and Mechanical Properties of Pathogens. In: Camesano, T. (eds) Nanotechnology to Aid Chemical and Biological Defense. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7218-1_1

Download citation

Publish with us

Policies and ethics