Skip to main content

Non Coding RNA Molecules as Potential Biomarkers in Breast Cancer

  • Chapter
Advances in Cancer Biomarkers

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 867))

Abstract

The pursuit of minimally invasive biomarkers is a challenging but exciting area of research. Clearly, such markers would need to be sensitive and specific enough to aid in the detection of breast cancer at an early stage, would monitor progression of the disease, and could predict the individual patient’s response to treatment. Unfortunately, to date, markers with such characteristics have not made it to the clinic for breast cancer. Past years, many studies indicated that the non-coding part of our genome (the so called ‘junk’ DNA), may be an ideal source for these biomarkers. In this chapter, the potential use of microRNAs and long non-coding RNAs as biomarkers will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  CAS  PubMed  Google Scholar 

  2. Chen K, Rajewsky N (2007) The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 8(2):93–103

    Article  CAS  PubMed  Google Scholar 

  3. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Kusenda B et al (2006) MicroRNA biogenesis, functionality and cancer relevance. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 150(2):205–215

    Article  CAS  PubMed  Google Scholar 

  5. Homo sapiens miRNAs in the miRBase at Manchester University. http://www.mirbase.org/

  6. Bentwich I et al (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37(7):766–770

    Article  CAS  PubMed  Google Scholar 

  7. Friedman RC et al (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20

    Article  CAS  PubMed  Google Scholar 

  9. Lagos-Quintana M et al (2001) Identification of novel genes coding for small expressed RNAs. Science 294(5543):853–858

    Article  CAS  PubMed  Google Scholar 

  10. Lau NC et al (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294(5543):858–862

    Article  CAS  PubMed  Google Scholar 

  11. Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294(5543):862–864

    Article  CAS  PubMed  Google Scholar 

  12. Lee Y et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23(20):4051–4060

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Baskerville S, Bartel DP (2005) Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11(3):241–247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Rodriguez A et al (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14(10A):1902–1910

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Lee Y et al (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21(17):4663–4670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Cai X, Hagedorn CH, Cullen BR (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10(12):1957–1966

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Denli AM et al (2004) Processing of primary microRNAs by the Microprocessor complex. Nature 432(7014):231–235

    Article  CAS  PubMed  Google Scholar 

  18. Gregory RI et al (2004) The Microprocessor complex mediates the genesis of microRNAs. Nature 432(7014):235–240

    Article  CAS  PubMed  Google Scholar 

  19. Lund E et al (2004) Nuclear export of microRNA precursors. Science 303(5654):95–98

    Article  CAS  PubMed  Google Scholar 

  20. Grishok A et al (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106(1):23–34

    Article  CAS  PubMed  Google Scholar 

  21. Hutvagner G et al (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293(5531):834–838

    Article  CAS  PubMed  Google Scholar 

  22. Ketting RF et al (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15(20):2654–2659

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Gregory RI et al (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123(4):631–640

    Article  CAS  PubMed  Google Scholar 

  24. Lin SL, Chang D, Ying SY (2005) Asymmetry of intronic pre-miRNA structures in functional RISC assembly. Gene 356:32–38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Brennecke J et al (2005) Principles of microRNA-target recognition. PLoS Biol 3(3), e85

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Kren BT et al (2009) MicroRNAs identified in highly purified liver-derived mitochondria may play a role in apoptosis. RNA Biol 6(1):65–72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Tanzer A, Stadler PF (2004) Molecular evolution of a microRNA cluster. J Mol Biol 339(2):327–335

    Article  CAS  PubMed  Google Scholar 

  28. Lewis BP et al (2003) Prediction of mammalian microRNA targets. Cell 115(7):787–798

    Article  CAS  PubMed  Google Scholar 

  29. Krek A et al (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500

    Article  CAS  PubMed  Google Scholar 

  30. Rajewsky N (2006) microRNA target predictions in animals. Nat Genet 38(Suppl):S8–S13

    Article  CAS  PubMed  Google Scholar 

  31. Brennecke J et al (2003) Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113(1):25–36

    Article  CAS  PubMed  Google Scholar 

  32. Calin GA et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101(9):2999–3004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Negrini M et al (1995) Definition and refinement of chromosome 11 regions of loss of heterozygosity in breast cancer: identification of a new region at 11q23.3. Cancer Res 55(14):3003–3007

    CAS  PubMed  Google Scholar 

  34. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866

    Article  CAS  PubMed  Google Scholar 

  35. Lu J et al (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838

    Article  CAS  PubMed  Google Scholar 

  36. Gaur A et al (2007) Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res 67(6):2456–2468

    Article  CAS  PubMed  Google Scholar 

  37. Calin GA et al (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99(24):15524–15529

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Iorio MV et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65(16):7065–7070

    Article  CAS  PubMed  Google Scholar 

  39. Dvinge H et al (2013) The shaping and functional consequences of the microRNA landscape in breast cancer. Nature 497(7449):378–382

    Article  CAS  PubMed  Google Scholar 

  40. Piccart-Gebhart MJ (2006) Adjuvant trastuzumab therapy for HER2-overexpressing breast cancer: what we know and what we still need to learn. Eur J Cancer 42(12):1715–1719

    Article  CAS  PubMed  Google Scholar 

  41. Tang F et al (2006) MicroRNA expression profiling of single whole embryonic stem cells. Nucleic Acids Res 34(2):e9

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Jiang J et al (2005) Real-time expression profiling of microRNA precursors in human cancer cell lines. Nucleic Acids Res 33(17):5394–5403

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Perou CM et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    Article  CAS  PubMed  Google Scholar 

  44. Sorlie T et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 100(14):8418–8423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Dowsett M, Dunbier AK (2008) Emerging biomarkers and new understanding of traditional markers in personalized therapy for breast cancer. Clin Cancer Res 14(24):8019–8026

    Article  CAS  PubMed  Google Scholar 

  46. Harvey JM et al (1999) Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J Clin Oncol 17(5):1474–1481

    CAS  PubMed  Google Scholar 

  47. Yamashita H et al (2006) Immunohistochemical evaluation of hormone receptor status for predicting response to endocrine therapy in metastatic breast cancer. Breast Cancer 13(1):74–83

    Article  PubMed  Google Scholar 

  48. Adams BD, Furneaux H, White BA (2007) The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. Mol Endocrinol 21(5):1132–1147

    Article  CAS  PubMed  Google Scholar 

  49. Boyerinas B et al (2010) The role of let-7 in cell differentiation and cancer. Endocr Relat Cancer 17(1):F19–F36

    Article  CAS  PubMed  Google Scholar 

  50. Griffiths-Jones S et al (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36(Database issue):D154–D158

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Blenkiron C et al (2007) MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol 8(10):R214

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Mattie MD et al (2006) Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer 5:24

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Harris L et al (2007) American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 25(33):5287–5312

    Article  CAS  PubMed  Google Scholar 

  54. O’Hanlon DM et al (1995) An evaluation of preoperative CA 15–3 measurement in primary breast carcinoma. Br J Cancer 71(6):1288–1291

    Article  PubMed Central  PubMed  Google Scholar 

  55. Uehara M et al (2008) Long-term prognostic study of carcinoembryonic antigen (CEA) and carbohydrate antigen 15–3 (CA 15–3) in breast cancer. Int J Clin Oncol 13(5):447–451

    Article  CAS  PubMed  Google Scholar 

  56. Taplin S et al (2008) Mammography facility characteristics associated with interpretive accuracy of screening mammography. J Natl Cancer Inst 100(12):876–887

    Article  PubMed Central  PubMed  Google Scholar 

  57. Lawrie CH et al (2008) Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 141(5):672–675

    Article  PubMed  Google Scholar 

  58. Chen X et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18(10):997–1006

    Article  CAS  PubMed  Google Scholar 

  59. Gilad S et al (2008) Serum microRNAs are promising novel biomarkers. PLoS One 3(9), e3148

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Corsten MF et al (2010) Circulating microRNA-208b and microRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet 3(6):499–506

    Article  PubMed  Google Scholar 

  61. Etheridge A et al (2011) Extracellular microRNA: a new source of biomarkers. Mutat Res 717(1–2):85–90

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Huang Z et al (2010) Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer 127(1):118–126

    Article  CAS  PubMed  Google Scholar 

  63. Park NJ et al (2009) Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res 15(17):5473–5477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Hanson EK, Lubenow H, Ballantyne J (2009) Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Anal Biochem 387(2):303–314

    Article  CAS  PubMed  Google Scholar 

  65. Wang K et al (2010) Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res 38(20):7248–7259

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Weber JA et al (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56(11):1733–1741

    Article  CAS  PubMed  Google Scholar 

  67. Zen K, Zhang CY (2012) Circulating microRNAs: a novel class of biomarkers to diagnose and monitor human cancers. Med Res Rev 32(2):326–48

    Google Scholar 

  68. Zubakov D et al (2010) MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation. Int J Legal Med 124(3):217–226

    Article  PubMed Central  PubMed  Google Scholar 

  69. Weickmann JL, Glitz DG (1982) Human ribonucleases. Quantitation of pancreatic-like enzymes in serum, urine, and organ preparations. J Biol Chem 257(15):8705–8710

    CAS  PubMed  Google Scholar 

  70. Mitchell PS et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105(30):10513–10518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Kroh EM et al (2010) Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods 50(4):298–301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Wu Q et al (2011) Next-generation sequencing of microRNAs for breast cancer detection. J Biomed Biotechnol 2011:597145

    PubMed Central  PubMed  Google Scholar 

  73. Asaga S et al (2011) Direct serum assay for microRNA-21 concentrations in early and advanced breast cancer. Clin Chem 57(1):84–91

    Article  CAS  PubMed  Google Scholar 

  74. Heneghan HM et al (2010) Systemic miRNA-195 differentiates breast cancer from other malignancies and is a potential biomarker for detecting noninvasive and early stage disease. Oncologist 15(7):673–682

    Article  PubMed Central  PubMed  Google Scholar 

  75. Zhao H et al (2010) A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer. PLoS One 5(10), e13735

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  76. Ng EK et al (2013) Circulating microRNAs as specific biomarkers for breast cancer detection. PLoS One 8(1), e53141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Gupta GP, Massague J (2006) Cancer metastasis: building a framework. Cell 127(4):679–695

    Article  CAS  PubMed  Google Scholar 

  78. Nguyen DX, Bos PD, Massague J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9(4):274–284

    Article  CAS  PubMed  Google Scholar 

  79. Sawan C et al (2008) Epigenetic drivers and genetic passengers on the road to cancer. Mutat Res 642(1–2):1–13

    Article  CAS  PubMed  Google Scholar 

  80. Ma L, Weinberg RA (2008) Micromanagers of malignancy: role of microRNAs in regulating metastasis. Trends Genet 24(9):448–456

    Article  CAS  PubMed  Google Scholar 

  81. Nicoloso MS et al (2009) MicroRNAs–the micro steering wheel of tumour metastases. Nat Rev Cancer 9(4):293–302

    Article  CAS  PubMed  Google Scholar 

  82. Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449(7163):682–688

    Article  CAS  PubMed  Google Scholar 

  83. Gee HE et al (2008) MicroRNA-10b and breast cancer metastasis. Nature 455(7216):E8–E9, author reply E9

    Article  CAS  PubMed  Google Scholar 

  84. Huang GL et al (2009) Clinical significance of miR-21 expression in breast cancer: SYBR-Green I-based real-time RT-PCR study of invasive ductal carcinoma. Oncol Rep 21(3):673–679

    CAS  PubMed  Google Scholar 

  85. Bandyopadhyay S et al (2004) PTEN up-regulates the tumor metastasis suppressor gene Drg-1 in prostate and breast cancer. Cancer Res 64(21):7655–7660

    Article  CAS  PubMed  Google Scholar 

  86. Varga AE et al (2005) Silencing of the Tropomyosin-1 gene by DNA methylation alters tumor suppressor function of TGF-beta. Oncogene 24(32):5043–5052

    Article  CAS  PubMed  Google Scholar 

  87. Qian B et al (2009) High miR-21 expression in breast cancer associated with poor disease-free survival in early stage disease and high TGF-beta1. Breast Cancer Res Treat 117(1):131–140

    Article  CAS  PubMed  Google Scholar 

  88. Yan LX et al (2008) MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 14(11):2348–2360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Zhu Q et al (2012) miR-21 promotes migration and invasion by the miR-21-PDCD4-AP-1 feedback loop in human hepatocellular carcinoma. Oncol Rep 27(5):1660–1668

    CAS  PubMed  Google Scholar 

  90. Gibbons DL et al (2009) Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes Dev 23(18):2140–2151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Adams BD, Guttilla IK, White BA (2008) Involvement of microRNAs in breast cancer. Semin Reprod Med 26(6):522–536

    Article  CAS  PubMed  Google Scholar 

  92. Liu C, Tang DG (2011) MicroRNA regulation of cancer stem cells. Cancer Res 71(18):5950–5954

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Ahmad A et al (2011) Phosphoglucose isomerase/autocrine motility factor mediates epithelial-mesenchymal transition regulated by miR-200 in breast cancer cells. Cancer Res 71(9):3400–3409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Gregory PA et al (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10(5):593–601

    Article  CAS  PubMed  Google Scholar 

  95. Corcoran C et al (2011) Intracellular and extracellular microRNAs in breast cancer. Clin Chem 57(1):18–32

    Article  CAS  PubMed  Google Scholar 

  96. Maitah MY et al (2011) Up-regulation of sonic hedgehog contributes to TGF-beta1-induced epithelial to mesenchymal transition in NSCLC cells. PLoS One 6(1), e16068

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Zavadil J, Bottinger EP (2005) TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 24(37):5764–5774

    Article  CAS  PubMed  Google Scholar 

  98. Tryndyak VP, Beland FA, Pogribny IP (2010) E-cadherin transcriptional down-regulation by epigenetic and microRNA-200 family alterations is related to mesenchymal and drug-resistant phenotypes in human breast cancer cells. Int J Cancer 126(11):2575–2583

    CAS  PubMed  Google Scholar 

  99. Burk U et al (2008) A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 9(6):582–589

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Valastyan S et al (2011) Activation of miR-31 function in already-established metastases elicits metastatic regression. Genes Dev 25(6):646–659

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Valastyan S et al (2009) A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137(6):1032–1046

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Stuelten CH, Salomon DS (2010) miR-31 in cancer: location matters. Cell Cycle 9(23):4608–4609

    Article  CAS  PubMed  Google Scholar 

  103. Valastyan S, Weinberg RA (2010) miR-31: a crucial overseer of tumor metastasis and other emerging roles. Cell Cycle 9(11):2124–2129

    Article  CAS  PubMed  Google Scholar 

  104. Tavazoie SF et al (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451(7175):147–152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Png KJ et al (2011) MicroRNA-335 inhibits tumor reinitiation and is silenced through genetic and epigenetic mechanisms in human breast cancer. Genes Dev 25(3):226–231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Yu F et al (2007) Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131(6):1109–1123

    Article  CAS  PubMed  Google Scholar 

  107. Ma L et al (2010) miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 12(3):247–256

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Zhou X et al (2012) MicroRNA-9 as potential biomarker for breast cancer local recurrence and tumor estrogen receptor status. PLoS One 7(6):e39011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Katayama S et al (2005) Antisense transcription in the mammalian transcriptome. Science 309(5740):1564–1566

    Article  PubMed  Google Scholar 

  110. Cabili MN et al (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25(18):1915–1927

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Derrien T, Guigo R, Johnson R (2011) The long non-coding RNAs: a new (P)layer in the “Dark Matter”. Front Genet 2:107

    PubMed Central  PubMed  Google Scholar 

  112. Guttman M et al (2010) Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol 28(5):503–510

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Caretti G et al (2006) The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators of MyoD and skeletal muscle differentiation. Dev Cell 11(4):547–560

    Article  CAS  PubMed  Google Scholar 

  114. Feng J et al (2006) The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev 20(11):1470–1484

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Lanz RB et al (1999) A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell 97(1):17–27

    Article  CAS  PubMed  Google Scholar 

  116. Mazo A et al (2007) Transcriptional interference: an unexpected layer of complexity in gene regulation. J Cell Sci 120(Pt 16):2755–2761

    Article  CAS  PubMed  Google Scholar 

  117. Willingham AT et al (2005) A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 309(5740):1570–1573

    Article  CAS  PubMed  Google Scholar 

  118. Orom UA et al (2010) Long noncoding RNAs with enhancer-like function in human cells. Cell 143(1):46–58

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  119. Gupta RA et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071–1076

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  120. Rinn JL et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7):1311–1323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. Chisholm KM et al (2012) Detection of long non-coding RNA in archival tissue: correlation with polycomb protein expression in primary and metastatic breast carcinoma. PLoS One 7(10):e47998

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  122. Chen W et al (1997) Expression of neural BC200 RNA in human tumours. J Pathol 183(3):345–351

    Article  CAS  PubMed  Google Scholar 

  123. Iacoangeli A et al (2004) BC200 RNA in invasive and preinvasive breast cancer. Carcinogenesis 25(11):2125–2133

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim De Leeneer .

Editor information

Editors and Affiliations

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

De Leeneer, K., Claes, K. (2015). Non Coding RNA Molecules as Potential Biomarkers in Breast Cancer. In: Scatena, R. (eds) Advances in Cancer Biomarkers. Advances in Experimental Medicine and Biology, vol 867. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7215-0_16

Download citation

Publish with us

Policies and ethics