Skip to main content

Genetically Modified Mice for Studying TNAP Function

  • Chapter
  • First Online:
Neuronal Tissue-Nonspecific Alkaline Phosphatase (TNAP)

Part of the book series: Subcellular Biochemistry ((SCBI,volume 76))

Abstract

Genetically modified mice are powerful tools for understanding the functions of genes and proteins and often serve as models of human disease. Here, several knockout and transgenic mouse lines related to tissue-nonspecific alkaline phosphatase (TNAP) are described. Conventional TNAP knockout mice die before weaning and show vitamin B6 dependent epilepsy and impaired bone mineralization, mimicking infantile hypophosphatasia. Administration of recombinant human TNAP rescues the lethal phenotype and improves bone mineralization in the null knockout mice, and this enzyme replacement therapy has been successfully applied to the treatment of human patients. Transgenic expression of human TNAP also rescues the TNAP knockout mice. Studies of the TNAP knockout mice and their double knockouts with ectonucleotide pyrophosphatase/phosphodiesterase 1 or progressive ankylosis protein revealed that pyridoxal phosphate and inorganic pyrophosphate are natural substrates of TNAP. Bone osteopontin from TNAP knockout mice is highly phosphorylated, whereas osteopontin from TNAP knockout mice expressing human TNAP is de-phosphorylated, similar to that in wild type mice, indicating that osteopontin is also a natural substrate of TNAP and that phosphorylated osteopontin contributes the impaired bone mineralization in TNAP knockout mice. Conditional TNAP knockout mice and TNAP mutants produced by ENU (N-ethyl-N-nitrosourea) mutagenesis show milder hypophosphatasia and are expected to be useful models of adult hypophosphatasia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addison WN, Masica DL, Gray JJ et al (2010) Phosphorylation-dependent inhibition of mineralization by osteopontin ASARM peptides is regulated by PHEX cleavage. J Bone Miner Res 25:695–705

    Article  CAS  PubMed  Google Scholar 

  • Aigner B, Rathkolb B, Klaften M et al (2009) Generation of N-ethyl-N-nitrosourea-induced mouse mutants with deviations in plasma enzyme activities as novel organ-specific disease models. Exp Physiol 94:412–421

    Article  CAS  PubMed  Google Scholar 

  • Chabas D, Baranzini SE, Mitchell D et al (2001) The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease. Science 294:1731–1735

    Article  CAS  PubMed  Google Scholar 

  • Diao H, Iwabuchi K, Li L et al (2008) Osteopontin regulates development and function of invariant natural killer T cells. Proc Natl Acad Sci USA 105:15884–15889

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fedde KN, Blair L, Silverstein J et al (1999) Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia. J Bone Miner Res 14:2015–2026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Foster BL, Nagatomo KJ, Tso HW et al (2013) Tooth root dentin mineralization defects in a mouse model of hypophosphatasia. J Bone Miner Res 28:271–282

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harmey D, Hessle L, Narisawa S et al (2004) Concerted regulation of inorganic pyrophosphate and osteopontin by Akp2, Enpp1, and Ank: an integrated model of the pathogenesis of mineralization disorders. Am J Pathol 164:1199–1209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harmey D, Johnson KA, Zelken J et al (2006) Elevated skeletal osteopontin levels contribute to the hypophosphatasia phenotype in Akp2−/− mice. J Bone Miner Res 21:1377–1386

    Article  CAS  PubMed  Google Scholar 

  • Hessle L, Johnson KA, Anderson HC et al (2002) Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc Natl Acad Sci USA 99:9445–9449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ho AM, Johnson MD, Kingsley DM (2000) Role of the mouse ank gene in control of tissue calcification and arthritis. Science 289:265–270

    Article  CAS  PubMed  Google Scholar 

  • Hough TA, Polewski M, Johnson K et al (2007) Novel mouse model of autosomal semidominant adult hypophosphatasia has a splice site mutation in the tissue nonspecific alkaline phosphatase gene Akp2. J Bone Miner Res 22:1397–1407

    Article  CAS  PubMed  Google Scholar 

  • Jono S, Peinado C, Giachelli CM (2000) Phosphorylation of osteopontin is required for inhibition of vascular smooth muscle cell calcification. J Biol Chem 275:20197–20203

    Article  CAS  PubMed  Google Scholar 

  • Linder CH, Englund UH, Narisawa S et al (2013) Isozyme profile and tissue-origin of alkaline phosphatases in mouse serum. Bone 53:399–408

    Article  PubMed Central  Google Scholar 

  • Lobe CG, Koop KE, Kreppner W et al (1999) Z/AP, a double reporter for cre-mediated recombination. Dev Biol 208:281–292

    Google Scholar 

  • Lomeli H, Ramos-Mejia V, Gertsenstein M et al (2000) Targeted insertion of Cre recombinase into the TNAP gene: excision in primordial germ cells. Genesis 26:116–117

    Article  CAS  PubMed  Google Scholar 

  • MacGregor GR, Zambrowicz BP, Soriano P (1995) Tissue non-specific alkaline phosphatase is expressed in both embryonic and extraembryonic lineages during mouse embryogenesis but is not required for migration of primordial germ cells. Development 121:1487–1496

    CAS  PubMed  Google Scholar 

  • Millan JL, Narisawa S, Lemire I et al (2008) Enzyme replacement therapy for murine hypophosphatasia. J Bone Miner Res 23:777–787

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murshed M, Harmey D, Millan JL et al (2005) Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone. Genes Dev 19:1093–1104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Narisawa S, Frohlander N, Millan JL (1997) Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia. Dev Dyn 208:432–446

    Article  CAS  PubMed  Google Scholar 

  • Narisawa S, Harmey D, Yadav MC et al (2007) Novel inhibitors of alkaline phosphatase suppress vascular smooth muscle cell calcification. J Bone Miner Res 22:1700–1710

    Article  CAS  PubMed  Google Scholar 

  • Narisawa S, Hasegawa H, Watanabe K et al (1994) Stage-specific expression of alkaline phosphatase during neural development in the mouse. Dev Dyn 201:227–235

    Article  CAS  PubMed  Google Scholar 

  • Narisawa S, Wennberg C, Millan JL (2001) Abnormal vitamin B6 metabolism in alkaline phosphatase knock-out mice causes multiple abnormalities, but not the impaired bone mineralization. J Pathol 193:125–133

    Article  CAS  PubMed  Google Scholar 

  • Narisawa S, Yadav MC, Millan JL (2013) In vivo overexpression of tissue-nonspecific alkaline phosphatase increases skeletal mineralization and affects the phosphorylation status of osteopontin. J Bone Miner Res 28:1587–1598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rittling SR, Matsumoto HN, McKee MD et al (1998) Mice lacking osteopontin show normal development and bone structure but display altered osteoclast formation in vitro. J Bone Miner Res 13:1101–1111

    Article  CAS  PubMed  Google Scholar 

  • Sabrautzki S, Rubio-Aliaga I, Hans W et al (2012) New mouse models for metabolic bone diseases generated by genome-wide ENU mutagenesis. Mamm Genome 23:416–430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sali A, Favaloro J, Terkeltaub R et al (1999) Germline deletion of the nucleoside triphosphate pyrophosphohydrolase (NTPPPH) plasma cell glycoprotein (PC-1) produces abnormal calcification of periarticular tissues. In: Vanduffel L, Lemmens R (eds) Ecto-ATPases and related ectonucleotidases: proceedings of the second international workshop on Ecto-ATPases and related ecotonucleotidases, 1st edn. Shaker Publishing B.V., Diepenbeek, pp 267–282

    Google Scholar 

  • Skynner MJ, Drage DJ, Dean WL et al (1999) Transgenic mice ubiquitously expressing human placental alkaline phosphatase (PLAP): an additional reporter gene for use in tandem with beta-galactosidase. Int J Dev Biol 43:85–90

    CAS  PubMed  Google Scholar 

  • Sheen CR, Kuss P, Narisawa S et al (2015) Pathophysiological role of vascular smooth muscle alkaline phosphatase in medial artery calcification. J Bone Miner Res 30:824–836

    Google Scholar 

  • Vattikuti R, Towler DA (2004) Osteogenic regulation of vascular calcification: an early perspective. Am J Physiol Endocrinol Metab 286:E686–E696

    Article  CAS  PubMed  Google Scholar 

  • Waymire KG, Mahuren JD, Jaje JM et al (1995) Mice lacking tissue non-specific alkaline phosphatase die from seizures due to defective metabolism of vitamin B-6. Nat Genet 11:45–51

    Article  CAS  PubMed  Google Scholar 

  • Whyte MP, Greenberg CR, Salman NJ et al (2012) Enzyme-replacement therapy in life-threatening hypophosphatasia. N Engl J Med 366:904–913

    Article  CAS  PubMed  Google Scholar 

  • Yadav MC, de Oliveira RC, Foster BL et al (2012) Enzyme replacement prevents enamel defects in hypophosphatasia mice. J Bone Miner Res 27:1722–1734

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yadav MC, Simao AM, Narisawa S et al (2011) Loss of skeletal mineralization by the simultaneous ablation of PHOSPHO1 and alkaline phosphatase function: a unified model of the mechanisms of initiation of skeletal calcification. J Bone Miner Res 26:286–297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamamoto S, Orimo H, Matsumoto T et al (2011) Prolonged survival and phenotypic correction of Akp2−/− hypophosphatasia mice by lentiviral gene therapy. J Bone Miner Res 26:135–142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshitake H, Rittling SR, Denhardt DT et al (1999) Osteopontin-deficient mice are resistant to ovariectomy-induced bone resorption. Proc Natl Acad Sci USA 96:8156–8160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of Interest

The author has no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonoko Narisawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Narisawa, S. (2015). Genetically Modified Mice for Studying TNAP Function. In: Fonta, C., Négyessy, L. (eds) Neuronal Tissue-Nonspecific Alkaline Phosphatase (TNAP). Subcellular Biochemistry, vol 76. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7197-9_3

Download citation

Publish with us

Policies and ethics