Skip to main content

Vanadium in the Environment and Its Bioremediation

  • Chapter
Plants, Pollutants and Remediation

Abstract

Vanadium is an element with symbol V and atomic number 23. The vast majority of vanadium demand is from the steel industry, and the rest for titanium alloy and catalyst in chemical factory. Air pollution and water pollution by vanadium were recognized from early twentieth century. Increasing information on the toxicity and medicinal use enhanced the development of bioremediation of vanadium. In this chapter, the author would like to overview the history of pollution of vanadium, vanadium toxicity, bioaccumulation and bioremediation of vanadium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allison JD, Brown DS, Novo-Gradac KJ (1989) MINTEQA2/PRODEFA2, A geochemical assessment model for environment system: version 3.0. US EPA, Office of Research and Development, Washington, DC, 20460

    Google Scholar 

  • Barwise AJG (1990) Role of nickel and vanadium in petroleum classification. Energy Fuels 4:647–652

    Article  CAS  Google Scholar 

  • Benz R (1988) Structure and function of porins from gram-negative bacteria. Annu Rev Microbiol 42:359–393

    Article  CAS  PubMed  Google Scholar 

  • Benz R, Schmid A, Hancock RE (1985) Ion selectivity of gram-negative bacterial porins. J Bacteriol 162:722–727

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berg LR (1963) Evidence of vanadium toxicity resulting from the use of certain commercial phosphorus supplements in chick rations. Poult Sci 42:766–769

    Article  CAS  Google Scholar 

  • Berg LR (1966) Effect of diet composition on vanadium toxicity for the chick. Poult Sci 45:1346–1352

    Article  CAS  PubMed  Google Scholar 

  • Brown TJ, Idoine N, Raycraft ER, Shaw RA, Deady EA (2014) World mineral production 2008–12. British Geological Survey, pp 1–115

    Google Scholar 

  • Chen L, Duce RA (1983) The sources of sulfate, vanadium and mineral matter in aerosol particles over Bermunda. Atmos Environ 17:2055–2064

    Article  CAS  Google Scholar 

  • Cole PC, Eckert J, Williams K (1983) The determination of dissolved and particulate vanadium in sea water by x-ray fluorescence spectrometry. Anal Chim Acta 153:61–67

    Article  CAS  Google Scholar 

  • Collier RW (1984) Particulate and dissolved vanadium in the North Pacific Ocean. Nature 309:441

    Article  CAS  Google Scholar 

  • Crans DC, Smee JJ, Gaidamauskas E, Yang L (2004) The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem Rev 104:849–902

    Article  CAS  PubMed  Google Scholar 

  • Daniel EP, Lillie RD (1938) Experimental vanadium poisoning in the white rat. Pub Health Rep (1896–1970) 53:765–777

    Google Scholar 

  • Duce RA, Hoffman GL (1976) Atmospheric vanadium transport to the ocean. Atmos Environ 10:989–996

    Article  CAS  PubMed  Google Scholar 

  • Dutton WF (1911) Vanadiumism. J Am Med Assoc LVI:1648

    Article  Google Scholar 

  • Elbetieha A, Al-Hamood MH (1997) Long-term exposure of male and female mice to trivalent and hexavalent chromium compounds: effect on fertility. Toxicology 116:39–47

    Article  CAS  PubMed  Google Scholar 

  • Emsley J (1998) The elements (Oxford chemistry guides). Oxford University Press, Oxford

    Google Scholar 

  • Fattorini D, Notti A, Nigro M, Regoli F (2010) Hyperaccumulation of vanadium in the Antarctic polychaete Perkinsiana littoralis as a natural chemical defense against predation. Environ Sci Pollut Res 17:220–228

    Article  CAS  Google Scholar 

  • Filby RH, Branthaver JFE (1987) Metal complexes in fossil fuels: geochemistry, characterization, and processing. In: Presented at the ACS National meeting in New York. American Chemical Society, Washington, DC

    Google Scholar 

  • Franke KW, Moxon AL (1936) A comparison of the minimum fatal doses of selenium, tellurium, arsenic and vanadium. J Pharmacol Exp Ther 58:454–459

    CAS  Google Scholar 

  • Franke KW, Moxon AL (1937) The toxicity of orally ingested arsenic, selenium, tellurium, vanadium and molybdenum. J Pharmacol Exp Ther 61:89–102

    CAS  Google Scholar 

  • Fukushima M, Suzuki H, Saito K, Chatt A (2009) Vanadium levels in marine organisms of Onagawa Bay in Japan. J Radioanal Nucl Chem 282:85–89

    Article  CAS  Google Scholar 

  • Guzman J, Saucedo I, Navarro R, Revilla J, Guibal E (2002) Vanadium interactions with chitosan: influence of polymer protonation and metal speciation. Langmuir 18:1567–1573

    Article  CAS  Google Scholar 

  • Hathcock JN, Hill CH, Matrone G (1964) Vanadium toxicity and distribution in chicks and rats. J Nutr 82:106–110

    CAS  PubMed  Google Scholar 

  • He Y, Ma W, Li Y, Liu J, Jing W, Wang L (2014) Expression of metallothionein of freshwater crab (Sinopotamon henanense) in Escherichia coli enhances tolerance and accumulation of zinc, copper and cadmium. Ecotoxicology 23:56–64

    Article  CAS  PubMed  Google Scholar 

  • Henze M (1911) Untersuchungen über des Blut der Ascidien. I. Mitteilung. Die Vanadiumverbindung der Blutkörperochen. Hoppe- Seyler’s. Z Physiol Chem 72:494–501

    Article  CAS  Google Scholar 

  • Ishii T, Nakai I, Numako C, Okoshi K (1993) Discovery of a new vanadium accumulator, the fan worm Pseudopotamilla occelata. Naturwissenschaften 80:268–270

    Article  CAS  Google Scholar 

  • Jacks G (1976) Vanadium in an area just outside Stockholm. Environ Pollut 11:289–295

    Article  CAS  Google Scholar 

  • Jain GC, Pareek H, Sharma S, Bhardwaj M, Khajja BS (2007) Reproductive toxicity of vanadyl sulphate in male rats. J Health Sci 53:137–141

    Article  CAS  Google Scholar 

  • Jansson-Charrier M, Guibal E, Roussy J, Delanghe B (1996) Vanadium (IV) sorption by chitosan: kinetics and equilibrium. Water Res 30:465–475

    Article  CAS  Google Scholar 

  • Juang RS, Wu FC, Tseng RL (1999) Adsorption removal of copper(II) using chitosan from simulated rinse solutions containing chelating agents. Water Res 30:2403–2409

    Article  Google Scholar 

  • Kaczala F, Marques M, Hogland W (2009) Lead and vanadium removal from a real industrial wastewater by gravitational settling/sedimentation and sorption onto Pinus sylvestris sawdust. Biores Technol 100:235–243

    Article  CAS  Google Scholar 

  • Kadiiska MB, Mason RP, Dreher KL, Costa DL, Ghio AJ (1997) In vivo evidence of free radical formation in the rat lung after exposure to an emission source air pollution particle. Chem Res Toxicol 10:1104–1108

    Article  CAS  PubMed  Google Scholar 

  • Kanda T, Nose Y, Wuchiyama J, Uyama T, Moriyama Y, Michibata H (1997) Identification of a vanadium-associated protein from the vanadium-rich ascidian, Ascidia sydneiensis samea. Zool Sci 14:37–42

    Article  CAS  PubMed  Google Scholar 

  • Knudtson BK (1979) Acute toxicity of vanadium to two species of freshwater fish. Bull Environ Contam Toxicol 23:95–99

    Article  CAS  PubMed  Google Scholar 

  • Kotrba P, Dolecková L, de Lorenzo V, Ruml T (1999) Enhanced bioaccumulation of heavy metal ions by bacterial cells due to surface display of short metal binding peptides. Appl Environ Microbiol 65:1092–1098

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kunz RG, Giannelli JF, Stensel HD (1976) Vanadium removal from industrial wastewaters. J Water Pollut Control Fed 48:762–770

    CAS  Google Scholar 

  • Lin K-H, Chien M-F, Hsieh J-L, Huang C-C (2010) Mercury resistance and accumulation in Escherichia coli with cell surface expression of fish metallothionein. Appl Microbiol Biotechnol 87:561–569

    Article  CAS  PubMed  Google Scholar 

  • Llobet JM, Domingo JL (1984) Acute toxicity of vanadium compounds in rats and mice. Toxicol Lett 23:227–231

    Article  CAS  PubMed  Google Scholar 

  • Llobet JM, Colomina MT, Sirvent JJ, Doningo JL (1993) Reproductive toxicity evaluation of vanadium in male mice. Toxicology 80:199–206

    Article  CAS  PubMed  Google Scholar 

  • Mauro JM, Pazirandeh M (2000) Construction and expression of functional multi-domain polypeptides in Escherichia coli: expression of the Neurospora crassa metallothionein gene. Lett Appl Microbiol 30:161–166

    Article  CAS  PubMed  Google Scholar 

  • Mejáre M, Ljung S, Bülow L (1998) Selection of cadmium specific hexapeptides and their expression as OmpA fusion proteins in Escherichia coli. Protein Eng 11:489–494

    Article  PubMed  Google Scholar 

  • Michibata H (2012) Vanadium. Springer, Dordrecht

    Book  Google Scholar 

  • Michibata H, Ueki T (2010) Advances in research on the accumulation, redox behavior, and function of vanadium in ascidians. Biomol Concepts 1:97–107

    Article  CAS  PubMed  Google Scholar 

  • Michibata H, Terada T, Anada N, Yamakawa K, Numakunai T (1986) The accumulation and distribution of vanadium, iron, and manganese in some solitary ascidians. Biol Bull 171:672–681

    Article  CAS  Google Scholar 

  • Michibata H, Hirata J, Uesaka M (1987) Separation of vanadocytes: determination and characterization of vanadium ion in the separated blood cells of the ascidian, Ascidia ahodori. J Exp Zool 244:33–38

    Article  CAS  Google Scholar 

  • Michibata H, Iwata Y, Hirata J (1991) Isolation of highly acidic and vanadium-containing blood cells from among several types of blood cell from Ascidiidae species by density-gradient centrifugation. J Exp Zool 257:306–313

    Article  Google Scholar 

  • Michibata H, Yamaguchi N, Uyama T, Ueki T (2003) Molecular biological approaches to the accumulation and reduction of vanadium by ascidians. Coord Chem Rev 237:41–51

    Article  CAS  Google Scholar 

  • Michibata H, Yoshinaga M, Yoshihara M, Kawakami N, Yamaguchi N, Ueki T (2007) Genes and proteins involved in vanadium accumulation by ascidians. In: ACS symposium series. American Chemical Society, Washington, DC, pp 264–280

    Google Scholar 

  • Morgan AM, El-Tawil OS (2003) Effects of ammonium metavanadate on fertility and reproductive performance of adult male and female rats. Pharm Res 47:75–85

    Article  CAS  Google Scholar 

  • Moxon AL, DuBois KP (1939) The influence of arsenic and certain other elements on the toxicity of seleniferous grains three figures. J Nutr 18:447–457

    CAS  Google Scholar 

  • Namasivayam C, Sangeetha D (2007) Removal of anions, heavy metals, organics and dyes from water by adsorption onto a new activated carbon from Jatropha Husk, an agro-industrial solid waste. Process Saf Environ Prot 85:181–184

    Article  CAS  Google Scholar 

  • Namdeo M, Bajpai SK (2008) Chitosan–magnetite nanocomposites (CMNs) as magnetic carrier particles for removal of Fe(III) from aqueous solutions. Colloid Surf A Physicochem Eng Asp 320:161–168

    Article  CAS  Google Scholar 

  • Nelson TS, Gillis MB, Peeler HT (1962) Studies of the effect of vanadium on chick growth. Poult Sci 41:519–522

    Article  Google Scholar 

  • Nikaido H, Rosenberg EY (1983) Porin channels in Escherichia coli: studies with liposomes reconstituted from purified proteins. J Bacteriol 153:241–252

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niu H, Volesky B (2003) Characteristics of anionic metal species biosorption with waste crab shells. Hydrometallurgy 71:209–215

    Article  CAS  Google Scholar 

  • Nordberg GF, Fowler BA, Nordberg M, Friberg L (2011) Handbook on the toxicology of metals. Academic, Waltham

    Google Scholar 

  • Parles T (2012) Vanadium market fundamentals and implications. Presented at the metal bulletin 28th international ferroalloys conference. Berlin, Germany.

    Google Scholar 

  • Pazirandeh M, Chrisey LA, Mauro JM, Campbell JR, Gaber BP (1995) Expression of the Neurospora crassa metallothionein gene in Escherichia coli and its effect on heavy-metal uptake. Appl Microbiol Biotechnol 43:1112–1117

    Article  CAS  PubMed  Google Scholar 

  • Pazirandeh M, Wells BM, Ryan RL (1998) Development of bacterium-based heavy metal biosorbents: enhanced uptake of cadmium and mercury by Escherichia coli expressing a metal binding motif. Appl Environ Microbiol 64:4068–4072

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pennesi C, Totti C, Beolchini F (2013) Removal of vanadium(III) and molybdenum(V) from wastewater using Posidonia oceanica (Tracheophyta) biomass. PLoS One 8:e76870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Benito JF (2006) Effects of chromium(VI) and vanadium(V) on the lifespan of fish. J Trace Elem Med Biol 20:161–170

    Article  CAS  PubMed  Google Scholar 

  • Prakash N, Sudha PN, Renganathan NG (2012) Copper and cadmium removal from synthetic industrial wastewater using chitosan and nylon 6 – Springer. Environ Sci Pollut Res 19: 2930–2941

    Google Scholar 

  • Rehder D (2008) Bioinorganic vanadium chemistry. Wiley, Chichester

    Book  Google Scholar 

  • Romoser GL, Dudley WA, Machlin LJ, Loveless L (1961) Toxicity of vanadium and chromium for the growing chick. Poult Sci 40:1171–1173

    Article  Google Scholar 

  • Rychcik M, Skyllas-Kazacos M (1988) Characteristics of a new all-vanadium redox flow battery. J Power Sources 22:59–67

    Article  CAS  Google Scholar 

  • Samino S, Michibata H, Ueki T (2012) Identification of a novel Vanadium-binding protein by EST analysis on the most vanadium-rich ascidian, Ascidia gemmata. Mar Biotechnol 14:143–154

    Article  CAS  PubMed  Google Scholar 

  • Samuelson P, Wernérus H, Svedberg M, StÃ¥hl S (2000) Staphylococcal surface display of metal-binding polyhistidyl peptides. Appl Environ Microbiol 66:1243–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauge-Merle S, Cuine S, Carrier P, Lecomte-Pradines C, Luu DT, Peltier G (2003) Enhanced toxic metal accumulation in engineered bacterial cells expressing Arabidopsis thaliana phytochelatin synthase. Appl Environ Microbiol 69:490–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sefström NG (1831) Ueber das Vanadin, ein neues Metall, gefunden im Stangeneisen von Eckersholm, einer Eisenhütte, die ihr Erz von Taberg in SmÃ¥land bezieht. Ann Phys Chem 97:43–49

    Article  Google Scholar 

  • Singh S, Mulchandani A, Chen W (2008) Highly selective and rapid arsenic removal by metabolically engineered Escherichia coli cells expressing Fucus vesiculosus metallothionein. Appl Environ Microbiol 74:2924–2927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stendahl DH, Sprague JB (1982) Effects of water hardness and pH on vanadium lethality to rainbow trout. Water Res 16:1479–1488

    Article  CAS  Google Scholar 

  • Stocks P (1960) On the relations between atmospheric pollution in urban and rural localities and mortality from cancer, bronchitis and pneumonia, with particular reference to 3:4 benzopyrene, beryllium, molybdenum, vanadium and arsenic. Br J Cancer 14:397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundararaman P, Biggs WR, Reynolds JG (1988) Vanadylporphyrins, indicators of kerogen breakdown and generation of petroleum. Geochim Cosmochim Acta 52:2337–2341

    Article  CAS  Google Scholar 

  • Trivedi S, Ueki T, Yamaguchi N, Michibata H (2003) Novel vanadium-binding proteins (vanabins) identified in cDNA libraries and the genome of the ascidian Ciona intestinalis. Biochim Biophys Acta 1630:64–70

    Article  CAS  PubMed  Google Scholar 

  • Ueki T, Michibata H (2011) Molecular mechanism of the transport and reduction pathway of vanadium in ascidians. Coord Chem Rev 255:2249–2257

    Article  CAS  Google Scholar 

  • Ueki T, Takemoto K, Fayard B, Salomé M, Yamamoto A, Kihara H, Susini J, Scippa S, Uyama T, Michibata H (2002) Scanning x-ray microscopy of living and freeze-dried blood cells in two vanadium-rich ascidian species, Phallusia mammillata and Ascidia sydneiensis samea. Zool Sci 19:27–35

    Article  PubMed  Google Scholar 

  • Ueki T, Adachi T, Kawano S, Aoshima M, Yamaguchi N, Kanamori K, Michibata H (2003a) Vanadium-binding proteins (vanabins) from a vanadium-rich ascidian Ascidia sydneiensis samea. Biochim Biophys Acta 1626:43–50

    Article  CAS  PubMed  Google Scholar 

  • Ueki T, Sakamoto Y, Yamaguchi N, Michibata H (2003b) Bioaccumulation of copper ions by Escherichia coli expressing vanabin genes from the vanadium-rich ascidian Ascidia sydneiensis samea. Appl Environ Microbiol 69:6442–6446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueki T, Yamaguchi N, Isago Y, Tanahashi H (2014) Vanadium accumulation in ascidians: a system overview. Coord Chem Rev 301–302:300–308. doi:10.1016/j.ccr.2014.09.007

  • Underwood E (2012) Trace elements in human and animal nutrition, 4th edn. Elsevier, Amsterdam

    Google Scholar 

  • Waters MD, Gardner DE, Coffin DL (1974) Cytotoxic effects of vanadium on rabbit alveolar macrophages in vitro. Toxicol Appl Pharmacol 28:253–263

    Article  CAS  PubMed  Google Scholar 

  • Weisel CP, Duce RA, Fasching JL, Heaton RW (1984) Estimates of the transport of trace metals from the ocean to the atmosphere. J Geophys Res 89:11607

    Article  CAS  Google Scholar 

  • WHO (2000) Vanadium air quality guidelines, WHO Regional Office for Europe, Copenhagen, Chapter 6.12, pp 1–9

    Google Scholar 

  • WHO (2005) Air quality guidelines – global update 2005. WHO, Copenhagen

    Google Scholar 

  • WHO (2014) Dust: definitions and concepts, Hazard prevention and control in the work environment: airborne dust (WHO, 1999). WHO, Chapter 1, pp 1–96

    Google Scholar 

  • Wyers H (1946) Some toxic effects of vanadium pentoxide. Br J Ind Med 3:177–182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi N, Kamino K, Ueki T, Michibata H (2004) Expressed sequence tag analysis of vanadocytes in a vanadium-rich ascidian, Ascidia sydneiensis samea. Mar Biotechnol 6:165–174

    Article  CAS  PubMed  Google Scholar 

  • Yoshida N, Kato T, Yoshida T, Ogawa K, Yamashita M, Murooka Y (2002) Bacterium-based heavy metal biosorbents: enhanced uptake of cadmium by E. coli expressing a metallothionein fused to beta-galactosidase. Biotechniques 32:551–558

    CAS  PubMed  Google Scholar 

  • Yoshihara M, Ueki T, Watanabe T, Yamaguchi N, Kamino K, Michibata H (2005) VanabinP, a novel vanadium-binding protein in the blood plasma of an ascidian, Ascidia sydneiensis samea. Biochim Biophys Acta 1730:206–214

    Article  CAS  PubMed  Google Scholar 

  • Yoshihara M, Ueki T, Yamaguchi N, Kamino K, Michibata H (2008) Characterization of a novel vanadium-binding protein (VBP-129) from blood plasma of the vanadium-rich ascidian Ascidia sydneiensis samea. Biochim Biophys Acta 1780:256–263

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Ueki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ueki, T. (2015). Vanadium in the Environment and Its Bioremediation. In: Öztürk, M., Ashraf, M., Aksoy, A., Ahmad, M., Hakeem, K. (eds) Plants, Pollutants and Remediation. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7194-8_2

Download citation

Publish with us

Policies and ethics