• Efstratios Gallopoulos
  • Bernard Philippe
  • Ahmed H. Sameh
Part of the Scientific Computation book series (SCIENTCOMP)


In order to make iterative methods effective or even convergent it is frequently necessary to combine them with an appropriate preconditioning scheme; cf. [1, 2, 3, 4, 5].


  1. 1.
    Axelsson, O., Barker, V.A.: Finite Element Solution of Boundary Value Problems. Academic Press Inc., Orlando (1984)MATHGoogle Scholar
  2. 2.
    Meurant, G.: Computer Solution of Large Linear Systems. Studies in Mathematics and its Applications. Elsevier Science, North-Holland (1999).
  3. 3.
    Chen, K.: Matrix Preconditioning Techniques and Applications. Cambridge University Press, Cambridge (2005)CrossRefMATHGoogle Scholar
  4. 4.
    Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)CrossRefMATHGoogle Scholar
  5. 5.
    van der Vorst, H.A.: Iterative Krylov Methods for Large Linear Systems. Cambridge University Press, Cambridge (2003).
  6. 6.
    Schenk, O., Gärtner, K.: Solving unsymmetric sparse systems of linear equations with pardiso. Future Gener. Comput. Syst. 20(3), 475–487 (2004)CrossRefGoogle Scholar
  7. 7.
    Censor, Y., Gordon, D., Gordon, R.: Component averaging: an efficient iterative parallel algorithm for large and sparse unstructured problems. Parallel Comput. 27(6), 777–808 (2001)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Gordon, D., Gordon, R.: Component-averaged row projections: a robust, block-parallel scheme for sparse linear systems. SIAM J. Sci. Stat. Comput. 27(3), 1092–1117 (2005)CrossRefMATHGoogle Scholar
  9. 9.
    Zouzias, A., Freris, N.: Randomized extended Kaczmarz for solving least squares. SIAM J. Matrix Anal. Appl. 34(2), 773–793 (2013)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Liu, J., Wright, S., Sridhar, S.: An Asynchronous Parallel Randomized Kaczmarz Algorithm. CoRR (2014). arXiv:abs/1201.3120 math.NA
  11. 11.
    Popa, C.: Least-squares solution of overdetermined inconsistent linear systems using Kaczmarz’s relaxation. Int. J. Comput. Math. 55(1–2), 79–89 (1995)CrossRefMATHGoogle Scholar
  12. 12.
    Popa, C.: Extensions of block-projections methods with relaxation parameters to inconsistent and rank-deficient least-squares problems. BIT Numer. Math. 38(1), 151–176 (1998)CrossRefMATHGoogle Scholar
  13. 13.
    Bodewig, E.: Matrix Calculus. North-Holland, Amsterdam (1959)MATHGoogle Scholar
  14. 14.
    Kamath, C., Sameh, A.: A projection method for solving nonsymmetric linear systems on multiprocessors. Parallel Comput. 9, 291–312 (1988/1989)Google Scholar
  15. 15.
    Tewarson, R.: Projection methods for solving space linear systems. Comput. J. 12, 77–80 (1969)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Tompkins, R.: Methods of steep descent. In: E. Beckenbach (ed.) Modern Mathematics for the Engineer. McGraw-Hill, New York (1956). Chapter 18Google Scholar
  17. 17.
    Gastinel, N.: Procédé itératif pour la résolution numérique d’un système d’équations linéaires. Comptes Rendus Hebd. Séances Acad. Sci. (CRAS) 246, 2571–2574 (1958)MathSciNetMATHGoogle Scholar
  18. 18.
    Gastinel, N.: Linear Numerical Analysis. Academic Press, Paris (1966). Translated from the original French text Analyse Numerique LineaireGoogle Scholar
  19. 19.
    Tanabe, K.: A projection method for solving a singular system of linear equations. Numer. Math. 17, 203–214 (1971)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Tanabe, K.: Characterization of linear stationary iterative processes for solving a singular system of linear equations. Numer. Math. 22, 349–359 (1974)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Ansorge, R.: Connections between the Cimmino-methods and the Kaczmarz-methods for the solution of singular and regular systems of equations. Computing 33, 367–375 (1984)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Cimmino, G.: Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari. Ric. Sci. Progr. Tech. Econ. Naz. 9, 326–333 (1938)Google Scholar
  23. 23.
    Dyer, J.: Acceleration of the convergence of the Kaczmarz method and iterated homogeneous transformations. Ph.D. thesis, University of California, Los Angeles (1965)Google Scholar
  24. 24.
    Gordon, R., Bender, R., Herman, G.: Algebraic reconstruction photography. J. Theor. Biol. 29, 471–481 (1970)CrossRefGoogle Scholar
  25. 25.
    Gordon, R., Herman, G.: Three-dimensional reconstruction from projections, a review of algorithms. Int. Rev. Cytol. 38, 111–115 (1974)CrossRefGoogle Scholar
  26. 26.
    Trummer, M.: A note on the ART of relaxation. Computing 33, 349–352 (1984)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Natterer, F.: Numerical methods in tomography. Acta Numerica 8, 107–141 (1999)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Byrne, C.: Applied Iterative Methods. A.K. Peters (2008)Google Scholar
  29. 29.
    Householder, A., Bauer, F.: On certain iterative methods for solving linear systems. Numer. Math. 2, 55–59 (1960)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Householder, A.S.: The Theory of Matrices in Numerical Analysis. Dover Publications, New York (1964)MATHGoogle Scholar
  31. 31.
    Elfving, T.: Block iterative methods for consistent and inconsistent linear equations. Numer. Math. 35, 1–12 (1980)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Kydes, A., Tewarson, R.: An iterative method for solving partitioned linear equations. Computing 15, 357–363 (1975)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Peters, W.: Lösung linear Gleichungeneichungssysteme durch Projektion auf Schnitträume von Hyperebenen and Berechnung einer verallgemeinerten Inversen. Beit. Numer. Math. 5, 129–146 (1976)MATHGoogle Scholar
  34. 34.
    Wainwright, R., Keller, R.: Algorithms for projection methods for solving linear systems of equations. Comput. Math. Appl. 3, 235–245 (1977)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Björck, Å., Elfving, T.: Accelerated projection methods for computing pseudoinverse solutions of systems for linear equations. BIT 19, 145–163 (1979)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Bramley, R., Sameh, A.: Row projection methods for large nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 168–193 (1992)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Elfving, T.: Group iterative methods for consistent and inconsistent linear equations. Technical Report LITH-MAT-R-1977-11, Linkoping University (1977)Google Scholar
  38. 38.
    Benzi, M.: Gianfranco cimmino’s contribution to numerical mathematics. In: Atti del Seminario di Analisi Matematica dell’Università di Bologna, pp. 87–109. Technoprint (2005)Google Scholar
  39. 39.
    Gilbert, P.: Iterative methods for the three-dimensional reconstruction of an object from projections. J. Theor. Biol. 36, 105–117 (1972)CrossRefGoogle Scholar
  40. 40.
    Lakshminarayanan, A., Lent, A.: Methods of least squares and SIRT in reconstruction. J. Theor. Biol. 76, 267–295 (1979)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Whitney, T., Meany, R.: Two algorithms related to the method of steepest descent. SIAM J. Numer. Anal. 4, 109–118 (1967)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Arioli, M., Duff, I., Noailles, J., Ruiz, D.: A block projection method for general sparse matrices. SIAM J. Sci. Stat. Comput. 13, 47–70 (1990)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Bjorck, A., Golub, G.: Numerical methods for computing angles between linear subspaces. Math. Comput. 27, 579–594 (1973)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Golub, G., Van Loan, C.: Matrix Computations, 4th edn. Johns Hopkins (2013)Google Scholar
  45. 45.
    Stewart, G.: On the perturbation of pseudo-inverse, projections and linear least squares problems. SIAM Rev. 19, 634–662 (1977)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Benzi, M., Frommer, A., Nabben, R., Szyld, D.B.: Algebraic theory of multiplicative Schwarz methods. Numerische Mathematik 89, 605–639 (2001)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Hackbusch, W.: Iterative Solution of Large Sparse Systems of Equations. Springer, New York (1999)Google Scholar
  48. 48.
    Tang, W.: Generalized Schwarz splittings. SIAM J. Sci. Stat. Comput. 13, 573–595 (1992)CrossRefMATHGoogle Scholar
  49. 49.
    Atenekeng-Kahou, G.A., Kamgnia, E., Philippe, B.: An explicit formulation of the multiplicative Schwarz preconditionner. Appl. Numer. Math. 57(11–12), 1197–1213 (2007)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Nuentsa Wakam, D., Atenekeng-Kahou, G.A.: Parallel GMRES with a multiplicative Schwarz preconditioner. J. ARIMA 14, 81–88 (2010)MathSciNetGoogle Scholar
  51. 51.
    Nuentsa Wakam, D., Erhel, J.: Parallelism and robustness in GMRES with the newton basis and the deflated restarting. Electron. Trans. Linear Algebra (ETNA) 40, 381–406 (2013)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Efstratios Gallopoulos
    • 1
  • Bernard Philippe
    • 2
  • Ahmed H. Sameh
    • 3
  1. 1.Computer Engineering and Informatics DepartmentUniversity of PatrasPatrasGreece
  2. 2.Campus de BeaulieuINRIA/IRISARennes CedexFrance
  3. 3.Department of Computer SciencePurdue UniversityWest LafayetteUSA

Personalised recommendations