Advertisement

Viscoelastic Properties

Chapter
  • 271 Downloads
Part of the Materials Science Series book series (MASCSE)

Abstract

At low strains, rubber-toughened plastics behave as viscoelastic composite materials. Their moduli are determined largely by the properties of the rigid matrix, but are modified by the presence of the rubber particles. A reduction in stiffness is the inevitable penalty for adding rubber to the material, and must be weighed against the increased fracture resistance conferred by the rubber.

Keywords

Shear Modulus Viscoelastic Property Loss Tangent Stress Concentration Factor Rubber Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. V. Yannas, J. Macromol. Sci. (Phys.) B6 (1972) 91.CrossRefGoogle Scholar
  2. 2.
    J. A. Schmitt and H. Keskkula, J. Appl. Polymer Sci. 8 (1960) 132.CrossRefGoogle Scholar
  3. 3.
    G. Cigna, J. Appl. Polymer Sci. 14 (1970) 1781.CrossRefGoogle Scholar
  4. 4.
    E. R. Wagner and L. M. Robeson, Rubber Chem. Technol. 43 (1970) 1129.CrossRefGoogle Scholar
  5. 5.
    S. Krause and L. J. Broutman, J. Appl. Polymer Sci. 18 (1974) 2945.CrossRefGoogle Scholar
  6. 6.
    T. Yoshii, Ph.D. Thesis, Cranfield, England, 1975.Google Scholar
  7. 7.
    S. G. Turley, J. Poly. Sci. C1 (1963) 101.CrossRefGoogle Scholar
  8. 8.
    C. B. Bucknall, J. Materials (ASTM) 4 (1969) 214.Google Scholar
  9. 9.
    Z. Hashin and S. Shtrikman, J. Mech. Phys. Solids 11 (1963) 127.CrossRefGoogle Scholar
  10. 10.
    Z. Hashin, J. Appl. Mech. 29 (1962) 143.CrossRefGoogle Scholar
  11. 11.
    R. Hill, J. Mech. Phys. Solids 13 (1965) 213.CrossRefGoogle Scholar
  12. 12.
    B. Budiansky, J. Composite Mat. 4 (1970) 286.CrossRefGoogle Scholar
  13. 13.
    J. C. Halpin, J. Composite Mat. 3 (1969) 732.Google Scholar
  14. 14.
    L. E. Nielsen, J. Appl. Polymer Sci. 17 (1973) 3819.CrossRefGoogle Scholar
  15. 15.
    L. E. Nielsen, Rheol. Acta 13 (1974) 594.Google Scholar
  16. 16.
    W. E. A. Davies, J. Phys. (Appl. Phys.) D4 (1971) 1176.CrossRefGoogle Scholar
  17. 17.
    G. Allen, D. J. Blundell, M. J. Bowden, F. G. Hutchinson and G. M. Jeffs, Faraday Spec. Discussions Chem. Soc. 2 (1972) 127.CrossRefGoogle Scholar
  18. 18.
    E. H. Kerner, Proc. Phys. Soc. 69B (1956) 802, 808.CrossRefGoogle Scholar
  19. 19.
    N. Laws, J. Mech. Phys. Solids 21 (1973) 9.CrossRefGoogle Scholar
  20. 20.
    K. Sataka, J. Appl. Polymer Sci. 14 (1970) 1007.CrossRefGoogle Scholar
  21. 21.
    N. K. Kalfoglou and H. L. Williams, J. Appl. Polymer Sci. 17 (1973) 1377.CrossRefGoogle Scholar
  22. 22.
    R. A. Dickie, J. Appl. Polymer Sci. 17 (1973) 45.CrossRefGoogle Scholar
  23. 23.
    R. A. Dickie and Mo-Fung Cheong, J. Appl. Polymer Sci. 17 (1973) 79.CrossRefGoogle Scholar
  24. 24.
    K. D. Ziegel, ACS Poly. Prepr. 15(1) (1974) 442.Google Scholar
  25. 25.
    M. Takayanagi, H. Harima and Y. Iwata, Mem Fac. Engng Kyushu Univ. 23 (1963) 1.Google Scholar
  26. 26.
    M. Takayanagi, S. Uemura and S. Minami, J. Poly. Sci. C5 (1964) 113.CrossRefGoogle Scholar
  27. 27.
    S. Uemura and M. Takayanagi, J. Appl. Polymer Sci. 10 (1966) 113.CrossRefGoogle Scholar
  28. 28.
    G. Kraus, K. W. Rollman and J. T. Gruver, Macromolecules 3 (1970) 92.CrossRefGoogle Scholar
  29. 29.
    C. B. Bucknall and M. M. Hall, J. Mater. Sci. 6 (1971) 95.CrossRefGoogle Scholar
  30. 30.
    L. Bohn, ACS Poly. Prepr. 15(1) (1974) 323.Google Scholar
  31. 31.
    J. N. Goodier, J. Appl. Mech. 55 (1933) 39.Google Scholar
  32. 32.
    O. C. Zienkiewicz, The Finite Element Method, McGraw-Hill, New York, 1967.Google Scholar
  33. 33.
    R. T. Fenner, Finite Element Methods for Engineers, Macmillan, London, 1975.Google Scholar
  34. 34.
    J. J. Broutman and G. Panizza, Int. J. Poly. Mater. 1 (1971) 95.CrossRefGoogle Scholar
  35. 35.
    B. D. Agarwal and L. J. Broutman, Fibre Sci. Technol. 7 (1974) 63.CrossRefGoogle Scholar
  36. 36.
    M. Matsuo, T. Wang and T. K. Kwei, J. Poly. Sci. A2 (1972) 1085.Google Scholar
  37. 37.
    R. J. Oxborough and P. B. Bowden, Phil. Mag. 30 (1974) 171.CrossRefGoogle Scholar
  38. 38.
    S. Timoshenko and J. N. Goodier, Theory of Elasticity (3rd edn.), McGraw-Hill, New York, 1970, Art 148.Google Scholar
  39. 39.
    T. T. Wang and L. H. Sharp, J. Adhesion 1 (1969) 69.CrossRefGoogle Scholar
  40. 40.
    R. H. Beck, S. Gratch, S. Newman and K. C. Rusch, Polymer Letters 6 (1968) 707.CrossRefGoogle Scholar
  41. 41.
    L. Morbitzer, K. H. Ott, H. Schuster and D. Kranz, Angew. Makromol. Chem. 27(1972) 57.CrossRefGoogle Scholar
  42. 42.
    R. H. Edwards, J. Appl. Mech. 18 (1951) 19.Google Scholar
  43. 43.
    W. T. Chen, J. Appl. Mech. 35 (1968) 770.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1977

Authors and Affiliations

  1. 1.Department of MaterialsCranfield Institute of TechnologyCranfield, BedfordEngland

Personalised recommendations