Manufacture of Toughened Plastics

Part of the Materials Science Series book series (MASCSE)


There are several different routes to toughened plastics. The most important processes are bulk or bulk-suspension polymerisation, emulsion polymerisation and the Ziegler-Natta process. Significant amounts of toughened plastics are also made by melt blending. Each process has its own technical and economic advantages, which are often specific to the type of material being produced. The bulk and bulk-suspension processes are especially suitable for HIPS, whilst emulsion polymerisation is preferred for ABS, MBS and related products. Ziegler-Natta catalysis has been adapted for the manufacture of toughened polypropylene, and melt blending is used extensively to make toughened PVC. Each of these processes is analysed in this chapter, with particular reference to the relationship between method of manufacture and structure of product.


Block Copolymer Latex Particle Phase Inversion Rubber Particle Chain Transfer Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Platzer, Ind. Eng. Chem. 62 (1970) 6.CrossRefGoogle Scholar
  2. 2.
    J. L. White and R. D. Patel, J. Appl. Polymer Sci. 19 (1975) 1775.CrossRefGoogle Scholar
  3. 3.
    R. L. Kruse, ACS Poly. Prepr. 15(1) (1974) 271.Google Scholar
  4. 4.
    G. E. Molau, J. Poly. Sci. A3 (1965) 4235.Google Scholar
  5. 5.
    G. F. Freeguard and M. Karmarkar, J. Appl. Polymer Sci. 15 (1971) 1657.CrossRefGoogle Scholar
  6. 6.
    P. Becher, Emulsions: Theory and Practice (2nd edn.), ACS Monograph No. 162, Reinhold, New York, 1965.Google Scholar
  7. 7.
    B. W. Bender, J. Appl. Polymer Sci. 9 (1965) 2887.CrossRefGoogle Scholar
  8. 8.
    G. E. Molau, W. M. Wittbrodt and V. E. Meyer, J. Appl. Polymer Sci. 13 (1969) 2735.CrossRefGoogle Scholar
  9. 9.
    E. R. Wagner and L. M. Robeson, Rubber Chem. Technol. 43 (1970) 1129.CrossRefGoogle Scholar
  10. 10.
    G. F. Freeguard and M. Karmarkar, J. Appl. Polymer Sci. 16 (1972) 69.CrossRefGoogle Scholar
  11. 11.
    M. Baer, J. Appl. Polymer Sci 16 (1972) 1109.CrossRefGoogle Scholar
  12. 12.
    J. D. Moore, Polymer 12 (1971) 478.CrossRefGoogle Scholar
  13. 13.
    B. Chauvel and J. C. Daniel, ACS Poly. Prepr. 15(1) (1974) 329.Google Scholar
  14. 14.
    A. E. Platt, in Encyclopedia of Polymer Science and Technology Vol. 13, Wiley, New York, 1970, p. 156.Google Scholar
  15. 15.
    A. C. Soldatos and A. S. Burhans, ACS Adv. Chem. Ser. 99 (1971) 531.CrossRefGoogle Scholar
  16. 16.
    A. C. Meeks, Polymer 15 (1974) 675.CrossRefGoogle Scholar
  17. 17.
    E. H. Rowe, A. R. Siebert and R. S. Drake, Mod. Plast. 49 (Aug. 1970) 110.Google Scholar
  18. 18.
    T. Yoshii, Ph.D. Thesis, Cranfield, England, 1975.Google Scholar
  19. 19.
    C. K. Riew, E. H. Rowe and A. R. Siebert, ACS Div. Org. Coat. Plast. Prepr. 34 (2) (1974) 353.Google Scholar
  20. 20.
    H. Batzer and S. A. Zahir, J. Appi Polymer Sci. 19 (1975) 585.CrossRefGoogle Scholar
  21. 21.
    S. Visconti and R. H. Marchessault, Macromolecules 7 (1974) 913.CrossRefGoogle Scholar
  22. 22.
    W. D. Bascom, R. L. Cottington, R. L. Jones and P. Peyser, ACS Div. Org. Coat. Plast. Prepr. 34(2) (1974) 300.Google Scholar
  23. 23.
    A. Noshay and L. M. Robeson, ACS Poly. Prepr. 15(1) (1974) 613.Google Scholar
  24. 24.
    T. G. Heggs, in Block Copolymers, D. C. Allport and W. H. Janes (eds.), Applied Science, London, 1973, Chapter 4.Google Scholar
  25. 25.
    G. Bier and G. Lehmann, in Copolymerization, G. E. Ham (ed.), Wiley-Interscience (1964) 149.Google Scholar
  26. 26.
    A. D. Caunt, J. Poly. Sci. C4 (1963) 49.CrossRefGoogle Scholar
  27. 27.
    T. G. Heggs, in Block Copolymers (see ref. 24), Chapter 8.Google Scholar
  28. 28.
    C. A. F. Tuijnman, J. Poly. Sci. C16 (1967) 2379.CrossRefGoogle Scholar
  29. 29.
    C. Placek, Chemical Process Review No. 46, Noyes Data Corp., Park Ridge, New Jersey, 1970.Google Scholar
  30. 30.
    W. V. Smith and R. H. Ewart, J. Chem. Phys. 16 (1948) 592.CrossRefGoogle Scholar
  31. 31.
    W. D. Harkins, J. Am. Chem. Soc. 69 (1947) 1428.CrossRefGoogle Scholar
  32. 32.
    J. L. Gardon, J. Poly. Sci. A1, 6 (1968) 623.CrossRefGoogle Scholar
  33. 33.
    J. L. Gardon, J. Poly. Sci. A1, 6 (1968) 643.CrossRefGoogle Scholar
  34. 34.
    J. L. Gardon, J. Poly Sci. AI, 6 (1968) 665.CrossRefGoogle Scholar
  35. 35.
    J. L. Gardon, J. Poly. Sci. AI, 6 (1968) 687.CrossRefGoogle Scholar
  36. 36.
    J. L. Gardon, J. Poly. Sci. AI, 6 (1968) 2853.CrossRefGoogle Scholar
  37. 37.
    J. L. Gardon, J. Poly. Sci. AI, 6 (1968) 2859.CrossRefGoogle Scholar
  38. 38.
    P. I. Lee, Plast. Polym. 39 (1971) 111.Google Scholar
  39. 39.
    M. R. Grancio and D. J. Williams, J. Poly. Sci. A1, 8 (1970) 2617.CrossRefGoogle Scholar
  40. 40.
    D. J. Williams, J. Poly. Sci. (Chem.) 12 (1974) 2123.Google Scholar
  41. 41.
    P. Keusch, R. A. Graff and D. J. Williams, Macromolecules 7 (1974) 304.CrossRefGoogle Scholar
  42. 42.
    N. Friis and A. E. Hamielec, J. Poly. Sci. (Chem.) 11 (1973) 3321.Google Scholar
  43. 43.
    J. L. Gardon, J. Poly. Sci. (Chem.) 12 (1974) 2133.Google Scholar
  44. 44.
    K. Kato, Koll. Z. Z. Polym. 220 (1967) 24.CrossRefGoogle Scholar
  45. 45.
    M. G. Huguet and T. R. Paxton, in Colloidal and Morphological Behaviour of Block and Graft Copolymers, G. E. Molau (ed.), Plenum, New York, 1971, p. 183.CrossRefGoogle Scholar
  46. 46.
    K. Kato, Paper presented to Royal Microscopical Society, Oxford, September 1968.Google Scholar
  47. 47.
    Z. Kromolicki and J. G. Robinson, SCI Monograph No. 26 (1967) 16.Google Scholar
  48. 48.
    M. Matsuo and S. Sagaye, in Colloidal and Morphological Behaviour of Block and Graft Copolymers, G. E. Molau (ed.), Plenum, New York, 1971, p. 1.CrossRefGoogle Scholar
  49. 49.
    C. D. Han, Y. W. Kim and S. J. Chen, J. Appl. Polymer Sci. 19 (1975) 2831.CrossRefGoogle Scholar
  50. 50.
    H. H. Frey, Kunststoffe 49 (1959) 50.Google Scholar
  51. 51.
    W. Göbel, Kaut Gummi 22 (1969) 116.Google Scholar
  52. 52.
    F. Severini, E. Mariani and A. Pagliari, ACS Adv. Chem. Ser. 99 (1971) 260.CrossRefGoogle Scholar
  53. 53.
    J. E. Bramfitt and J. M. Heaps, in Advances in PVC Compounding and Processing, M. Kaufmann (ed.), Maclaren, London, 1962, p. 41.Google Scholar
  54. 54.
    M. Matsuo, C. Nozaki and Y. Jyo, Poly. Engng Sci. 9 (1969) 197.CrossRefGoogle Scholar
  55. 55.
    J. Mann, R. J. Bird and G. Rooney, Makromol. Chem. 90 (1966) 207.CrossRefGoogle Scholar
  56. 56.
    C. B. Bucknall, Trans. IRI 39 (1963) 221.Google Scholar
  57. 57.
    R. R. Durst, R. M. Griffith, A. J. Urbanic and W. J. van Essen, ACS Div. Org. Coat. Plast. Prepr. 34(2) (1974) 320.Google Scholar
  58. 58.
    D. Stefan and H. L. Williams, J. Appl. Polymer Sci. 18 (1974) 1451.CrossRefGoogle Scholar
  59. 59.
    N. Platzer, ACS Poly. Prepr. 15(1) (1974) 28.Google Scholar
  60. 60.
    A. W. Hanson and R. L. Zimmerman, Ind. Eng. Chem. 49 (1957) 1803.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1977

Authors and Affiliations

  1. 1.Department of MaterialsCranfield Institute of TechnologyCranfield, BedfordEngland

Personalised recommendations