Compatibility and Copolymerisation

Part of the Materials Science Series book series (MASCSE)


Rubber-toughened plastics are composite materials, consisting of a rigid matrix with a relatively high T g and a rubbery disperse phase with a low T g. The adhesion between these phases should be strong, and the rubber should be broken down into small particles without becoming too finely dispersed to be effective in toughening the rigid polymer. Optimum particle sizes vary, but are usually in the range 0·1 to 2·0 μm. The task of the chemist is to control the morphology of the composite, the structure of the separate phases and the interfacial adhesion in such a way as to obtain the best balance of properties.


Block Copolymer Graft Copolymer Solubility Parameter Styrene Monomer Partial Miscibility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Krause, J. Macromol. Sci. C7 (1972) 251.CrossRefGoogle Scholar
  2. 2.
    P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, 1953.Google Scholar
  3. 3.
    J. H. Hildebrand, J. Am. Chem. Soc. 51 (1929) 66.CrossRefGoogle Scholar
  4. 4.
    G. S. Scatchard, Chem. Rev. 8 (1931) 321.CrossRefGoogle Scholar
  5. 5.
    G. Gee, Trans. IRI 18 (1943) 266.Google Scholar
  6. 6.
    P. J. Small, J. Appl. Chem. 3 (1953) 71.CrossRefGoogle Scholar
  7. 1.
    J. L. Gardon, J. Paint Technol. 38 (1966) 43.Google Scholar
  8. 8.
    C. M. Hansen, J. Paint Technol. 39 (1967) 104.Google Scholar
  9. 9.
    J. D. Crowley, G. S. Teague and J. W. Lowe, J. Paint Technol. 38 (1966) 269.Google Scholar
  10. 10.
    S. Chen, J. Appl. Polymer Sci. 15 (1971) 1247.CrossRefGoogle Scholar
  11. 11.
    M. T. Shaw, J. Appl. Polymer Sci. 18 (1974) 449.CrossRefGoogle Scholar
  12. 12.
    R. Konigsfeld, L. A. Kleintjens and A. R. Schultz, J. Poly. Sci. A2, 8 (1970) 1261.CrossRefGoogle Scholar
  13. 13.
    P. J. Flory, R. A. Orwoll and A. Vrij, J. Am. Chem. Soc. 86 (1964) 3515.CrossRefGoogle Scholar
  14. 14.
    P. J. Flory, J. Am. Chem. Soc. 87 (1965) 1833.CrossRefGoogle Scholar
  15. 15.
    L. P. McMaster, Macromolecules 6 (1973) 760.CrossRefGoogle Scholar
  16. 16.
    R. Konigsfeld, H. A. G. Chermin and M. Gordon, Proc. Roy. Soc. A319 (1970) 331.CrossRefGoogle Scholar
  17. 17.
    T. G. Fox, Bull. Am. Phys. Soc. 1 (1956) 123.Google Scholar
  18. 18.
    M. Gordon and J. S. Taylor, J. Appl. Chem. 2 (1952) 493.CrossRefGoogle Scholar
  19. 19.
    A. E. Platt, in Encyclopedia of Polymer Science and Technology, Vol. 13, Wiley, New York, 1970, p. 156.Google Scholar
  20. 20.
    G. E. Molau, J. Poly. Sci. B3 (1965) 1007.CrossRefGoogle Scholar
  21. 21.
    A. Brydon, G. M. Burnett and G. G. Cameron, J. Poly. Sci. (Chem.) 12 (1974) 1011.Google Scholar
  22. 22.
    A. Brydon, G. M. Burnett and G. G. Cameron, J. Poly. Sci. (Chem.) 11 (1973) 3255.Google Scholar
  23. 23.
    J. C. Bevington, J. Chem. Soc. Lond. (1954) 3707.Google Scholar
  24. 24.
    H. A. J. Battaerd and G. W. Tregear, Graft Copolymers, Interscience, New York, 1970.Google Scholar
  25. 25.
    R. E. Wetton, J. D. Moore and B. E. Fox, Makromol. Chem. 132 (1970) 135.CrossRefGoogle Scholar
  26. 26.
    J. P. Fischer, Angew. Makromol. Chem. 33 (1973) 35.CrossRefGoogle Scholar
  27. 27.
    G. E. Molau, J. Poly. Sci. A3 (1965) 4235.Google Scholar
  28. 28.
    S. L. Rosen, J. Appl. Polymer Sci. 17 (1973) 1805.CrossRefGoogle Scholar
  29. 29.
    W. A. Ludwico and S. L. Rosen, J. Appl. Polymer Sci. 19 (1975) 757.CrossRefGoogle Scholar
  30. 30.
    J. L. Locatelli and G. Riess, Angew. Makromol. Chem. 27 (1972) 201.CrossRefGoogle Scholar
  31. 31.
    J. L. Locatelli and G. Riess, Angew. Makromol. Chem. 28 (1973) 161.CrossRefGoogle Scholar
  32. 32.
    J. L. Locatelli and G. Riess, Angew. Makromol. Chem. 32 (1973) 101.CrossRefGoogle Scholar
  33. 33.
    J. L. Locatelli and G. Riess, Angew. Makromol. Chem. 32 (1973) 117.CrossRefGoogle Scholar
  34. 34.
    J. L. Locatelli and G. Riess, J. Poly. Sci. B11 (1973) 257.Google Scholar
  35. 35.
    J. L. Locatelli and G. Riess, J. Poly. Sci. (Chem.) 11 (1973) 3309.Google Scholar
  36. 36.
    J. L. Locatelli and G. Riess, Makromol. Chem. 175 (1974) 3523.CrossRefGoogle Scholar
  37. 37.
    J. L. Refregier, J. L. Locatelli and G. Riess, Eur. Poly. J. 10 (1974) 139.CrossRefGoogle Scholar
  38. 38.
    L. H. Tung and R. M. Wiley, J. Poly. Sci. (Phys.) 11 (1973) 1413.Google Scholar
  39. 39.
    M. Baer, J. Appl. Polymer Sci. 16 (1972) 1109.CrossRefGoogle Scholar
  40. 40.
    D. J. Stein, G. Fahrbach and H. Adler, Angew. Makromol. Chem. 38 (1974) 67.CrossRefGoogle Scholar
  41. 41.
    W. H. Janes, in Block Copolymers, D. C. Allport and W. H. Janes (eds.), Applied Science, London, 1973, p. 62.Google Scholar
  42. 42.
    T. G. Heggs, in Block Copolymers (see ref. 41), p. 105.Google Scholar
  43. 43.
    H. Lee and K. Neville, Handbook of Epoxy Resins, McGraw-Hill, New York, 1967.Google Scholar
  44. 44.
    W. G. Potter, Epoxy Resins, Iliffe, London, 1970.Google Scholar
  45. 45.
    E. H. Rowe, A. R. Siebert and R. S. Drake, Mod. Plast. 49 (Aug. 1970) 110.Google Scholar
  46. 46.
    C. K. Riew, E. H. Rowe and A. R. Siebert, ACS Div. Org. Coat. Chem. 34 (2) (1974) 353.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1977

Authors and Affiliations

  1. 1.Department of MaterialsCranfield Institute of TechnologyCranfield, BedfordEngland

Personalised recommendations