Skip to main content

Comparative Genetics and Disease Resistance in Wheat

  • Chapter
Wheat in a Global Environment

Part of the book series: Developments in Plant Breeding ((DIPB,volume 9))

  • 34 Accesses

Abstract

The hexaploid wheat genome is too complex for direct map-based cloning and model genomes have to be used to isolate genes from wheat. Comparative genomic analysis at the genetic map level has shown extensive conservation of the gene order between the different grass genomes in many chromosomal regions. However, little is known about the gene organization in grass genomes at the microlevel. We have investigated the microcollinearity at Lrk gene loci in the genomes of four grass species: wheat, barley, maize and rice. The Lrk genes, which encode receptor-like kinases, were found to be consistently associated with another type of receptor-like kinase (Tak) on chromosome groups 1 and 3 in Triticeae and on chromosomes homoeologous to Triticeae group 3 in the other grass genomes. On Triticeae chromosome group 1, Tak and Lrk together with genes putatively encoding NBS/LRR proteins form a cluster of genes. Comparison of the gene composition at orthologous Lrk loci in wheat, barley and rice revealed a maximal gene density of one gene per 5 kb. We conclude that small and large grass genomes contain regions which are highly enriched in genes. Microrearrangements between different grass genomes have been found and therefore, the choice of a good model genome is critical. We have recently started to work on the T monococcum model genome and confirmed its usefulness for analysis of the Lr10 leaf rust disease resistance locus in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bennetzen, J. L., SanMiguel, P., Chen, M., Tikhonov, A., Francki, M. and Avramova, Z. (1998): Grass genomes. Proc. Natl Acad. Sci. USA, 95, 1975–1978.

    Article  PubMed  CAS  Google Scholar 

  • Bevan, M., Bancroft, I., Bent, E., Love, K., Goodman, H., Dean, C., Bergkamp, R., Dirkse, W., van Steveran, M., Stikema, W. et al. (1998): Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature, 391, 485–488.

    Article  PubMed  CAS  Google Scholar 

  • Chen, M., SanMiguel, P., De Oliveira, A. C., Woo, S. S., Zhang, H., Wing, R. A. and Bennetzen, J. L. (1997): Microcolinearity in sh2-homologous regions of the maize, rice, and sorghum genomes. Proc. Natl Acad Sci. USA, 94, 3431–3435.

    Article  PubMed  CAS  Google Scholar 

  • Devos, K. M., Gale, M. D. (1997): Comparative genetics in the grasses. Plant Mol Biol, 35, 3–15.

    Article  PubMed  CAS  Google Scholar 

  • Feuillet, C., Keller, B. (1999): High gene density is conserved at syntenic loci of small and large grass genomes. Proc. Natl. Acad. Sci. USA, 96, 8665–8670.

    Article  Google Scholar 

  • Feuillet, C., Schachermayr, G., Keller, B. (1997): Molecular cloning of a new receptor-like kinase gene encoded at the LrlO disease resistance locus of wheat. Plant J, 11, 45–52.

    Article  PubMed  CAS  Google Scholar 

  • Gill, K. S., Gill, B. S., Endo, T. R., Taylor, T. (1996): Identification and high-density mapping of gene-rich regions in chromosome group 1 of wheat. Genetics, 144, 1883–1891.

    PubMed  CAS  Google Scholar 

  • Kleinhofs, A. et al (1998): Barley bacterial artificial chromosome library. Application to genetic analysis. Barley Newsletter, 42

    Google Scholar 

  • Künzel, G., Korzun, L., Meister, A. (2000): Cytologically integrated physical RFLP maps for the barley genome based on translocation breakpoints. Genetics, 154, 397–412.

    PubMed  Google Scholar 

  • Lijavetzky, D., Muzzi, G., Wicker, T., Keller, B., Wing, R.,. Dubcovsky J. (1999): Construction and characterization of a bacterial artificial chromosome (BAC) library for the A genome of wheat. Genome, 42, 1176–1182.

    CAS  Google Scholar 

  • Moullet, O., Zhang, H.-B., Lagudah, E. S. (1999): Construction and characterisation of a large DNA insert library from the D genome of wheat. Theor. Appl. Genet, 99, 305–313.

    Article  Google Scholar 

  • Panstruga, R. Büschges, R., Piffanelli, P. and Schulze-Lefert, P. (1998): A contiguous 60 kb genomic stretch from barley reveals molecular evidence for gene islands in a monocot genome. Nucl. Acids Res, 26, 1056–1062.

    Article  PubMed  CAS  Google Scholar 

  • Rahman, S., Abrahams, S., Abbott, D., Mukai, Y., Samuel, M., Morel!, M., Appels, R. (1997): A complex arrangement of genes at a starch branching enzyme I locus in the D-genome donor of wheat. Genome, 40, 465–474.

    Article  PubMed  CAS  Google Scholar 

  • Rounsley, S., Lin, X.Y. and Ketchum, K. A. (1998): Large-scale sequencing of plant genomes. Curr Opin. Plant Biol, 1, 136–141.

    Article  PubMed  CAS  Google Scholar 

  • SanMiguel, P., Tikhonov, A., Young-Kwan, J., Motchoulskaia, N., Zakharov, D., Melake-Berhan, A., Springer, P. S., Edwards, K. J., Lee, M., Avramova, Z. and Bennetzen, J. L. (1996): Nested retrotransposons in the intergenic regions of the maize genome. Science, 274, 765–768.

    Article  PubMed  CAS  Google Scholar 

  • Smith, D. B. and Flavell, R. B. (1975): Characterisation of the wheat genome by renaturation kinetics. Chromosoma, 50, 223–242.

    Article  CAS  Google Scholar 

  • Wang, G.-L., Holsten, T.E., Song, W.-Y., Wong, H.P., Ronald, P.C. (1995): Construction of a rice bacterial artificial chromosome library and identification of clones linked to the Xa-21 disease resistance locus. Plant J, 7, 525–533.

    Article  PubMed  CAS  Google Scholar 

  • Yang, D., Parco, A., Nandi, S., Subudhi, P., Zhu, Y., Wang, G., Huang, N. (1997): Construction of a bacterial artificial chromosome (BAC) library and identification of overlapping BAC clones with chromosome 4-specific RFLP markers in rice. Theor Appl. Genet, 95, 1147–1154.

    Article  CAS  Google Scholar 

  • Yu, G. X., Bush, A. L., Wise, R. P. (1996): Comparative mapping of homoeologous group 1 regions and genes for resistance to obligate biotrophs in Avena, Hordeum and Zea mays. Genome, 39, 155–164.

    Article  CAS  Google Scholar 

  • Zhang, H.-B., Choi, S.D., Woo, S.S., Li, Z.K., Wing, R.A. (1996): Construction and characterization of two rice bacterial artificial chromosome libraries from the parents of a permanent recombinant inbred mapping population. Mol. Breed, 2, 11–24.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Keller, B., Stein, N., Feuillet, C. (2001). Comparative Genetics and Disease Resistance in Wheat. In: Bedö, Z., Láng, L. (eds) Wheat in a Global Environment. Developments in Plant Breeding, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3674-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3674-9_38

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5618-4

  • Online ISBN: 978-94-017-3674-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics