Advertisement

Diatom preservation: experiments and observations on dissolution and breakage in modern and fossil material

  • Roger J. Flower
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 90)

Abstract

Selected aspects of diatom preservation in both laboratory and field environments are examined with a view to improving techniques and to help understand why only some lake sediments have good diatom preservation.

Laboratory measurements of biogenic silica following diatom dissolution by alkali digestion are questioned because results are shown to be dependant on initial sample size. Diatom breakage experiments identified drying carbonate rich sediment as a major cause of fragmentation of the large robust diatom Campylodiscus clypeus Ehrenb. Diatom dissolution experiments in carbonate media indicated that carbonate rich lakes should preserve diatoms better in order of the particular alkali metal type (Ca > Mg > Na). A preliminary assessment of the role of depth in diatom preservation is made for Lake Baikal where partly dissolved Cyclotella are more common in deep water surface sediments. The effect of time on diatom dissolution is examined in a saline lake sediment core and by comparing dissolution rates of recent and geologically old diatom samples in the laboratory. A simple link between diatom dissolution and sample age was not established. Factors thought to be important in controlling diatom preservation in lake sediments are discussed.

Key words

diatoms preservation breakage dissolution Lake Baikal diatomites 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appleby, P. G. & F. Oldfield, 1978. The calculation of 210Pb dates assuming a constant rate of supply of unsupported 21°Pb to the sediment. Catena 5: 1 – 8.CrossRefGoogle Scholar
  2. Appleby, P. G., P. Nolan, D. W. Gifford, M. J. Godfrey, F. Oldfield, N. J. Anderson & R. W. Battarbee, 1986. 210Pb dating by low background gamma counting. Hydrobiologia 141: 21 – 27.Google Scholar
  3. Barker, P., 1992. Differential diatom dissolution in Late-Quaternary sediments from Lake Manyara, Tanzania: an experimental approach. J. Paleolimnology 7: 235 – 251.CrossRefGoogle Scholar
  4. Barker, P., F. Gasse, N. Roberts & M. Taieb, 1990. Taphonomy and diagenesis in diatom assemblages: a Late-Pleistocene palaeoecological study from Lake Magadi, Kenya. Hydrobiologia 214, 267–272.Google Scholar
  5. Barron, J. A., 1976. Marine diatom and silicoflagellate biostratigraphy of the type Delmontian Stage and the type Bolivina obliqua Zone, California. J. Res. U.S. Geol. Survey 4: 339–351.Google Scholar
  6. Battarbee, R. W., 1986. Diatom analysis. In: B. E. Berglund (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley & Sons, Chichester: 527 – 570.Google Scholar
  7. Battarbee, R. W., 1988. The use of diatom analysis in Archaeology: A review. J. Archaeological Science 15, 621–644.Google Scholar
  8. Behrensmeyer, A. K. & S. M. Kidswell, 1985. Taphonomy’s contribution to paleobiology. Paleobiology 11: 105 – 199.Google Scholar
  9. Berner, R. A., 1980. Early diagenesis: a theoretical approach. Princetown University Press. 241 pp.Google Scholar
  10. Beyens, L. & L. Denys, 1982. Problems in diatom analysis of deposits: Allochthonous valves and fragmentation. Geol. Mijnbouw 61: 159–162.Google Scholar
  11. Edgington, D., J. V. Klump, J. A. Robbins, Y. S. Kusner, V. D. Pampura & I. V. Sandimmorov, 1991. Sedimentation rates, residence times and radionuclide inventories in Lake Baikal from 137Cs and 2L°Pb in sediment cores. Nature 350: 601 – 604.CrossRefGoogle Scholar
  12. Ferrante, J. G. & J. L. Parker, 1977. Transport of diatom frustules by copepod fecal pellets to the sediments of Lake Michigan. Limnol. Oceanogr. 22: 92–98.CrossRefGoogle Scholar
  13. Flower, R. J., 1980. A study of sediment formation, transport and deposition in Lough Neagh, Northern Ireland. Unpubl. D. Phil. Thesis. University of Ulster. 219 pp.Google Scholar
  14. Flower, R. J., 1990. Seasonal changes in sedimenting material collected by high aspect ration sediment traps operated in a holomictic eutrophic lake. Hydrobiologia 214: 311 – 316.CrossRefGoogle Scholar
  15. Flower, R. J., 1993. A taxonomic re-evaluation of endemic Cyclotella taxa in Lake Baikal, Siberia. Beih. Nova Hedwigia 106: 203–220.Google Scholar
  16. Flower R. J. & P. G. Appleby, 1992. Conservation of Moroccan wetlands and palaeoecological assessment of recent environmental change: some preliminary results with special reference to coastal wetlands. Environmental Change Research Centre, University College London, Research Paper 4: 1–42.Google Scholar
  17. Flower, R. J., R. W. Battarbee, A. C. Stevenson, S. T. Patrick, P. G. Appleby, T. J. C. Beebee, C. Fletcher, C. Marsh & J. Natkanski, 1988. A palaeoecological evaluation of the acidification of Cramner Pond, Hampshire. A report the Nature Conservancy Council by Ensis Ltd. London. 76 pp.Google Scholar
  18. Flower, R. J. & A. Nicholson, 1987. Relationships between bathymetry, water quality and diatoms in some Hebridean freshwater lochs. Freshwat. Biol. 18: 71–85.CrossRefGoogle Scholar
  19. Fritz, S. C., 1989. Lake development and limnological response to prehistoric land-use in Diss, Norfolk, U.K. J. Ecology 77: 182–202.Google Scholar
  20. Glover, R. M., 1982. Diatom fragmentation in Grand Traverse Bay, Lake Michigan and its implications for silica recycling. Unpubl. Ph. D. Thesis, University of Michigan.Google Scholar
  21. Goldberg, E. D., 1958. Determination of opal in marine sediments. J. Marine Research 17: 178 – 182.Google Scholar
  22. Haberyan, K. A., 1990. The misinterpretation of the planktonic diatom assemblage in traps and sediments: southern Lake Malawi, Africa. J. Paleolimnol 3: 35–44.Google Scholar
  23. Hecky, R. E. & P. Kilham, 1973. Diatoms in alkaline, saline lakes: ecology and geochemical significance. Limnol. Oceanogr. 18: 53–71.Google Scholar
  24. P. Hurd, D. C. & S. Birdwhistell, 1983. On producing a more general model for biogenic silica dissolution. Amer. J. Science 283: 1–28.CrossRefGoogle Scholar
  25. Hürlimann, J., 1992. A comparison of two diatom preparation methods. Aqua Plus, Wolleran. 11 pp.Google Scholar
  26. Jewson, D. H., R. Rippey & W. K. Gilmore, 1981. Loss rates from sedimentation, parasitism, and grazing during growth, nutrient limitation and dormancy of a diatom crop. Limnol. Oceanogr. 26: 1045–1056.Google Scholar
  27. Jorgensen, E. G., 1955. Solubility of the silica in diatoms. Physiol. Plant. 8; 4: 846 – 851.CrossRefGoogle Scholar
  28. Jousé, A., 1966. Diatomeen in Seesedimenten. Arch. Hydrobiol. Beih. Ergebn. Limnol. 4: 1–32.Google Scholar
  29. Kamatani, A., 1971. Physical and chemical characteristics of biogenous silica. Mar. Biol. 8: 89–95.Google Scholar
  30. Krause, G. I., C. I. Schelske & C. O. Davis, 1983. Comparison of three wet methods of digestion of biogenic silica in water. Freshwat. Biol. 13: 73–81.CrossRefGoogle Scholar
  31. Krauskopf, K. B., 1959. The geochemistry of silica in sedimentary environments. Special Publication of the Soc. Economic Palaeontologists and Mineralogists 7: 8091.Google Scholar
  32. Lewin, J. C., 1961. The dissolution of silica from diatom walls. Geochim. Cosmochim. Acta 21: 182–198.CrossRefGoogle Scholar
  33. Lotter, A., 1988. Paläoökologische and paläolimnologische Studie des Rotsees bei Luzern. Diss. Bot. 124: 1–187.Google Scholar
  34. Marshall, W. L. & J. M. Warakomski, 1980. Amorphous silica solubilities II. Effect of aqueous salt solutions at 25 °C. Geochim. Cosmochim. Acta 44: 915–924.Google Scholar
  35. Mathers, S. J., L. Chavez, F. Alvarado & S. D. J. Inglethorpe, 1991. Detailed investigations of selected Costa Rican diatomites. British Geological Survey, Nottingham and Re-cope S. A., San Jose. 74 pp.Google Scholar
  36. Meriläinen, J., 1971. The recent sedimentation of diatom frustules in four meromictic lakes. Ann. Bot. Fennici. 8: 160–176.Google Scholar
  37. Meriläinen, J., 1973. The dissolution of diatom frustules and its palaeoecological interpretation. Report of the Dept. of Quaternary Geology, University of Lund 3: 91–95.Google Scholar
  38. Mikkelsen, N., 1980. Experimental dissolution of Pliocene diatoms. Nova Hedwigia 33: 893 – 911.Google Scholar
  39. Mortlock, R. A. & P. N. Froelich, 1989. A simple and reliable method for the rapid determination of biogenic opal in pelagic sediments. Deep-Sea Research 36: 1415 – 1426.Google Scholar
  40. Moss, B., 1979. Algal and other evidence for major changes in Strumpshaw Broad, Norfolk, England, in the last two centuries. Br. Phycol. J. 14: 263 – 283.CrossRefGoogle Scholar
  41. Parker, J. I. & D. N. Edgington, 1976. The concentration of diatom frustules in Lake Michigan sediment cores. Limnol Oceanogr. 21: 887 – 893.CrossRefGoogle Scholar
  42. Parker, J. I., H. L. Conway & E. M. Yaguchi, 1977. Dissolution and diatom frustules and recycling of amorphous silicon in Lake Michigan. J. Fish. Res. Bd. Can. 34: 545–551.Google Scholar
  43. Renberg, I., 1990. A procedure for preparing large sets of diatom slides from sediment cores. J. Paleolimnology 4: 87 – 90.CrossRefGoogle Scholar
  44. Rippey, B., 1983. A laboratory study of silicon release processes from a lake sediment ( Lough Neagh, Northern Ireland). Arch. Hydrobiol. 96: 417–433.Google Scholar
  45. Round, F. E., 1964. The diatom sequence in lake deposits: some problems of interpretation. Verh. Internat. Verein. Limnol. 15: 1012–1026.Google Scholar
  46. Schelske, C. L., B. J. Eadie & G. L. Krause, 1984. Measured and predicted fluxes of biogenic silica in Lake Michigan. Limnol. & Oceanogr. 29: 99 – 110.CrossRefGoogle Scholar
  47. Shemesh, A., L. H. Burkle, & P. N. Froelich, 1989. Dissolution and preservation of Antarctic diatoms and the effect on sediment thanatocoenoses. Quat. Res. 31: 288–308.Google Scholar
  48. Smith. A. G., 1984. Newferry and the Boreal-Atlantic Transition. New Phytol. 98: 35 – 55.CrossRefGoogle Scholar
  49. Stevenson, A. C. & R. W. Battarbee, 1991. Palaeoecological and documentary records of recent environmental change in Garet El Ichkeul: a seasonally saline lake. Biol. Cons. 58: 275–295.CrossRefGoogle Scholar
  50. Stumm, W. & J. J. Morgan, 1970. Aquatic chemistry. Wiley & Sons, New York. 583 pp.Google Scholar
  51. Turner, J. T., 1991. Zooplankton feéding ecology: Do co-occurring copepods compete for the same food? Rev. Aquat. Sci. 5: 101–195.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • Roger J. Flower
    • 1
  1. 1.Environmental Change Research CentreUniversity College LondonLondonUK

Personalised recommendations