Advertisement

Eutrophication and recovery of Lake Vesijärvi (south Finland): Diatom frustules in varved sediments over a 30-year period

  • Mikko Liukkonen
  • Timo Kairesalo
  • Juha Keto
Part of the Developments in Hydrobiology book series (DIHY, volume 90)

Abstract

Lake Vesijärvi was loaded by sewage from the City of Lahti for 60 years until 1976 when the discharge was diverted. Paleolimnological analyses of the varved bottom sediment indicate that the sedimentation rate within the Enonselkä basin, the most eutrophic part of the lake, has been as high as 2 cm yr−1, and total phosphorus accumulation was 20–40 g P m−2 yr−1 during the last 20 years. Within the less eutrophic Laitialanselkä basin, the sedimentation rate did not exceed 1 cm yr−1 and the formation of varved sediment only began at the end of the 1960’s, i.e. about 10 years later than in Enonselkä.

Planktonic diatom production was highest in the Enonselkä basin. The most abundant diatoms in the sediment between 1970–1985 were Asterionella formosa, Aulacoseira islandica and Stephanodiscus spp. Fragilaria crotonensis and Tabellaria fenestrata had low abundances in the middle of the 1970’s but increased again at the end of the 1970’s. Asterionella formosa and Diatoma elongatum reached their maxima between 1979–1984 when the hypolimnion of the Enonselkä basin was aerated artificially. In the Laitialanselkä basin, the production of planktonic diatoms has been lower and the species composition of the diatom community differed from that in Enonselkä. However, at the end of 1980’s the total accumulation of diatoms in Laitialanselkä approached levels which were observed at the end of 1950’s in Enonselkä, prior to the rapid eutrophication period.

The production and thereby the sedimentation of diatoms has decreased towards the end of the 1980’s in Enonselkä, indicating reduced nutrient availability in the lake water. This reduction was due to the decreased external loading of phosphorus as well as to the decreased release of phosphorus from the sediment as a result of improved oxygen balance in the hypolimnion.

Key words

diatoms paleolimnology eutrophication varved sediment phosphorus accumulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, S. E. (ed.), 1974. Chemical analysis of ecological materials. Blackwell Scientific Publications, Oxford, 565 pp.Google Scholar
  2. Anderson, N. J., 1989. A whole-basin diatom accumulation rate for a small eutrophic lake in northern Ireland and its palaeoecological implications. J. Ecol. 77: 926 – 946.CrossRefGoogle Scholar
  3. Anderson, N. J., B. Rippey & A. C. Stevenson, 1990. Change to diatom assemblage in a eutrophic lake following point source nutrient re-direction: a palaeolimnological approach. Freshwat. Biol. 23: 205–217.Google Scholar
  4. Battarbee, R. W., 1984. Spatial variations in the watrer quality of Lough Erne, Northern Ireland, on the basis of surface sediment diatom analysis. Freshwat. Biol. 14: 539–545.Google Scholar
  5. Cleve-Euler, A. 1951–1955. Die Diatomeen von Schweden und Finnland. Kungl. Svenska Vetenskapsakad. Handl. Ser 4 2(1):1–163, 3(3):1–153, 4(1):1–158, 4.(5):1–255, 5. (4):1–231.Google Scholar
  6. Engstrom, D. R., B. Swain & J. C. Kingston, 1985. A paleolimnological record of human disturbance from Harvey’s Lake, Vermont: geochemistry, pigments and diatoms. Freshwat. Biol. 15: 261–288.Google Scholar
  7. Hartig, J. & Wallen, D., 1986. The influence of light and temperature on growth and photosynthesis of Fragilaria crotonensis (Kitton). J. Freshwater Ecol. 3: 371–382.Google Scholar
  8. Horppila, J. & T. Kairesalo, 1990. A fading recovery: The role of roach (Rutilus rutilus L.) in maintaining high phytoplankton productivity and biomass in Lake Vesijärvi, southern Finland. Hydrobiologia 200 /201: 153 – 165.Google Scholar
  9. Hustedt, F., 1930. Bacillariophyta (Diatomae). Die Stiswasser-Flora Mitteleuropas, 10, 2nd edn. G. Fischer, Jena, 466 pp.Google Scholar
  10. Hustedt, F., 1927-1966. Die Kieselalgen Deutschlands, Österreichs und der Schweiz. In Dr. L. Rabenhorst, Kryptogamenflora von Deutschland, Österreich un der Schweiz 7(1,2,3). Akademische Verlagsgesellschaft, Leipzig, 3 Volumes.Google Scholar
  11. Huttunen, P. & J.Meriläinen, 1978. New freezing device providing large unmixed sediment samples from lakes. Ann. bot. Fenn. 15: 128–130.Google Scholar
  12. Järnefelt, H., 1929. Zur Limnologie einiger Gewässer Fin- lands. V. Vesijärvi. Ann. Zool. Soc. Vanamo. 8: 8–17.Google Scholar
  13. Keating, K.I., 1978. Blue-green algal inhibition of diatom growth: transition from mesotrophic to eutrophic community structure. Science 199: 971 – 973.PubMedCrossRefGoogle Scholar
  14. Keto, J., 1982. The recovery of Lake Vesijärvi after sewage diversion. Hydrobiologia 86: 195 – 199.CrossRefGoogle Scholar
  15. Keto, J. & I. Sammalkorpi, 1988. A fading recovery: A conceptual model for Lake Vesijärvi management and research. Aqua Fennica 18, 2: 193 – 204.Google Scholar
  16. Keto, J. & L. Tuominen, 1992. Vesijärven vedenlaadun pitkäaikaiskehitys. Landen kaupungin Valvonta - ja tutkimuslaboratorion tiedonantoja. Lahti Municipal Laboratory. Annual Report. 46: 1–40 (in Finnish).Google Scholar
  17. Knoechel, R. & J.Kalff, 1975. Algal sedimentation: the cause of a diatom-blue-green succession. Verh. int. Ver. Limnol. 19: 745–754.Google Scholar
  18. Krammer, K. & H. Lange-Bertalot, 1986. Bacillariophyceae. Süsswasserflora von Mitteleuropa 2(1). G. Fisher, Stuttgart, 876 pp.Google Scholar
  19. Krammer, K. & H. Lange-Bertalot, 1988. Bacillariophyceae. Süsswasserflora von Mitteleuropa 2(2). G. Fisher, Stuttgart, 596 pp.Google Scholar
  20. Levander, K. M. & A. Wuorentaus, 1918. Planktonsammansättning i finska sjöar och floder ph’ grund av hâfningar utforda sommaren 1913. Fennia 40 (6): 1 – 95.Google Scholar
  21. Lund, J. W. G., 1964. Primary production and periodicity of phytoplankton. Verh. int. Ver. Limnol 15: 37–56.Google Scholar
  22. Murphy, J. & J. P. Riley, 1962. A modified single-solution method for the determination of phosphate in natural waters. Analyt. chim. Acta. 27: 31.Google Scholar
  23. Mölder, K. & R.Tynni, 1967. Über Finnlands rezente und subfossile Diatomeen, 1. Comptes Rendus de la Société géologique de Finlande. 39: 199 – 217Google Scholar
  24. Mölder, K. & R. Tynni, 1968–1973. Über Finnlands rezente and subfossile Diatomeen 2–7. Bull. Geol. Soc. Finl. 40:151–170, 41:235–251, 42:129–144, 43:203–220, 44:141–159, 45: 159 – 170.Google Scholar
  25. Nauwerck, A., 1963. Die Beziehungen zwischen Zooplankton and Phytoplankton im See Erken. Symb. Bot. Upsal. 17, 5: 1 – 163.Google Scholar
  26. Reynolds, C., 1987. The response of phytoplankton communities to changing lake environments. Schweiz Z. Hydrol. 49: 220–236.Google Scholar
  27. Rodhe, W., 1948. Environmental requirements of fresh-water plankton algae. Symb. Bot. Upsal. 10 (1): 1 – 149.Google Scholar
  28. Simola, H., 1977. Diatom succession in the formation of annually laminated sediment in Lovojärvi, a small eutrophicated lake. Ann. bot. Fenn. 14: 143–148.Google Scholar
  29. Stoermer, E. F., J. A. Wolin, C. L. Schelske & D. J. Conley, 1985. An assesment of ecological changes during the recent history of Lake Ontario Based on siliceous algal microfossils preserved in the sediments. J. Phycol. 21: 257 – 276.CrossRefGoogle Scholar
  30. Tikkanen, T., 1986. Kasviplanktonopas. Suomen Luonnonsuojelun Tuki Oy, Forssa, 278 pp. (in Finnish).Google Scholar
  31. Tilman, D., 1982. Resource competition algae and community structure. Princenton University Press, Princenton, 296 pp.Google Scholar
  32. Tilman, D., S. S. Kilham, P. Kilham 1982. Phytoplankton community ecology: The role of limiting nutrients. Annu. Rev. Ecol. Syst. 13: 349–372.Google Scholar
  33. Tynni, R, 1975–1980. Über Finnlands rezente and subfossile Diatomeen 8–11. Geol. Survey Finl. 274:1–55, 284:1–37, 296:1–55, 312: 1 – 93.Google Scholar
  34. Van Donk, E.& S. S. Kilham, 1990. Temperature effects on silicon-and phosphorus-limited growth and competitive interractions among three diatoms. J. Phycol. 26: 40 – 50.Google Scholar
  35. Willén, E., 1987. Phytoplankton and reversed eutrophication in Lake Mälaren, Central Sweden, 1965E.1983. Br. phycol. J. 2: 193E.208.Google Scholar
  36. Willén, E., 1991. Planctonic diatoms - an ecological review. Algol. Stud. 62: 69E.106.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • Mikko Liukkonen
    • 1
  • Timo Kairesalo
    • 2
  • Juha Keto
    • 3
  1. 1.Lammi Biological StationUniversity of HelsinkiLammiFinland
  2. 2.Lahti Research and Training CentreThe Environmental UnitLammiFinland
  3. 3.Lahti Municipal Research LaboratoryLahtiFinland

Personalised recommendations