Diatom assemblages and their relationship to environmental variables in lakes from the boreal forest-tundra ecotone near Yellowknife, Northwest Territories, Canada

  • Reinhard Pienitz
  • John P. Smol
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 90)


The relationship between diatom (Bacillariophyceae) taxa preserved in surface lake sediments and measured limnological and environmental variables in 22 lakes near Yellowknife (N.W.T.) was explored using multivariate statistical methods. The study sites are distributed along a latitudinal gradient that includes a strong vegetational gradient of boreal forests in the south to arctic tundra conditions in the north. Canonical correspondence analysis (CCA) revealed that lakewater concentrations of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) each accounted for independent and statistically significant proportions of variation in the distribution of diatom taxa. Weighted-averaging (WA) models were developed to infer DIC and DOC from the relative abundances of the 76 most common diatom taxa. These models can now be used to infer past DIC and DOC concentrations from diatom assemblages preserved in sediment cores of lakes in the Yellowknife area, which may provide quantitative estimates of changes in lakewater chemistry related to past vegetational shifts at treeline.

Key words

diatoms limnology paleolimnology canonical correspondence analysis weighted-averaging dissolved organic carbon dissolved inorganic carbon subarctic treeline Northwest Territories 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, D. S., R. B. Davis & F. Berge, 1986. Relationships between diatom assemblages in lake surface-sediments and limnological characteristics in southern Norway. In J. P. Smol, Battarbee, R. W., Davis, R. B. & Meriläinen, J. (eds), Diatoms and Lake Acidity. Dr W. Junk Publishers, Dordrecht: 97–113.CrossRefGoogle Scholar
  2. Birks, H. J. B., S. Juggins & J. M. Line, 1990. Lake surface-water chemistry reconstructions from palaeoecological data. In B. J. Mason (ed.), The Surface Waters Acidification Programme, Cambridge University Press, Cambridge: 301–311.Google Scholar
  3. Bryson, R. A., 1966. Air masses, streamlines, and the Boreal forest. Geogr. Bull. 8: 228–269.Google Scholar
  4. Camburn, K. E., J. C. Kingston & D. F. Charles, 1984–1986. Paleoecological Investigation of Recent Lake Acidification. PIRLA Diatom Iconograph, PIRLA Unpublished Report Series, report 3, Indiana University, USA.Google Scholar
  5. Charles, D. F., M. W. Binford. E. T. Furlong, R. A. Hites, M. J. Mitchell, S. A. Norton, F. Oldfield, M. J. Paterson, J. P. Smol, A. J. Uutala, J. R. White, D. R. Whitehead & R. J. Wise, 1990. Paleoecological investigation of recent lake acidification in the Adirondack Mountains, N.Y. J. Paleolimnol 3. 195–241.Google Scholar
  6. Clayton, J. S. & I. B. Marshal, 1972. Soil map of Canada. In The National Atlas of Canada, MacMillan Co., Toronto.Google Scholar
  7. Cwynar, L. C. & R. W. Spear, 1991. Reversion of forest to tundra in the central Yukon. Ecology 72: 202–212.CrossRefGoogle Scholar
  8. Davis, M. B. & D. B. Botkin, 1985. Sensitivity of cool-temperate forests and their fossil pollen record to rapid temperature change. Quatern. Res. 23: 327–340.Google Scholar
  9. Davis, R. B., D. S. Anderson & F. Berge, 1985. Palaeolimnological evidence that lake acidification is accompanied by loss of organic matter. Nature 316: 436–438.CrossRefGoogle Scholar
  10. Dixit, S. S., J. P. Smol, J. C. Kingston & D. F. Charles, 1992. Diatoms: Powerful indicators of environmental change. Environ. Sci. Technol. 26: 22–33.Google Scholar
  11. Dixit, S. S., B. F. Cumming, J. C. Kingston, J. P. Smol, H. J. B. Birks, A. J. Uutala, D. F. Charles & K. E. Camburn, 1993. Diatom assemblages from Adirondack lakes (New York, USA) and the development of inference models for retrospective environmental assessment. J. Paleolimnol 8• 27–47.Google Scholar
  12. Engstrom, D. R., 1987. Influence of vegetation and hydrology on the humus budgets of Labrador lakes. Can. J. Fish. Aquat. Sci. 44: 1306–1314.Google Scholar
  13. Environment Canada, 1979. Analytical methods manual. Inland Waters Directorate, Water Quality Branch, Ottawa, Canada.Google Scholar
  14. Environment Canada, 1989. Ecoclimatic regions of Canada, first approximation. Ecological Land Classification Series No. 23, Ecoregions Working Group, Ottawa.Google Scholar
  15. Foged, N., 1981. Diatoms in Alaska. Bibliotheca Phycologica, Band 53, J. Cramer Verlag, Vaduz, 317 pp.Google Scholar
  16. Gauch, H. G. Jr., 1982. Noise reduction by eigenvector ordinations. Ecology 63: 1643–1649.CrossRefGoogle Scholar
  17. Germain, H., 1981. Flore des diatomées. Boubée, Paris, 444 pp.Google Scholar
  18. Glew, J., 1991. Miniature gravity corer for recovering short sediment cores. J. Paleolimnol 5. 285–287.Google Scholar
  19. Hall, R. & J. P. Smol, 1992. A weighted-averaging regression and calibration model for inferring total phosphorus concentration from diatoms in British Columbia (Canada) lakes. Freshwat. Biol. 27: 417–434.Google Scholar
  20. Hustedt, F., 1927–1966. Die Kieselalgen Deutschlands, Österreichs und der Schweiz. In Dr. L. Rabenhorst’s Kryptogamen-Flora von Deutschland, Österreich und der Schweiz, Akademische Verlagsgesellschaft, Leipzig, 3 Vols.Google Scholar
  21. Hyvärinen, H., 1985. Holocene pollen stratigraphy of Baird Inlet, east-central Ellesmere Island, arctic Canada. Boreas 14: 19–32.CrossRefGoogle Scholar
  22. Kingston, J. C. & H. J. B. Birks, 1990. Dissolved organic carbon reconstructions from diatom assemblages in PIRLA project lakes, North America. Phil. Trans. r. Soc., Lond. B 327: 279–288.Google Scholar
  23. Krammer, K. & H. Lange-Bertalot, 1986–1991. Bacillariophyceae. Süßwasserfloravon Mitteleuropa, (1–4), Gustav Fischer Verlag, Stuttgart, 4 Vols.Google Scholar
  24. Larsen, J. A., 1989. The northern forest border in Canada and Alaska. Ecological Studies 70, Springer Verlag, 255 pp.Google Scholar
  25. Line, J. M., & H. J. B. Birks, 1990. WACALIB version 2.1–a computer program to reconstruct environmental variables from fossil assemblages by weighted averaging. J. Paleolimnol. 3: 170–173.CrossRefGoogle Scholar
  26. MacDonald, G. M., T. W. D. Edwards, K. A. Moser, R. Pienitz & J. P. Smol, 1993. Rapid response of treeline vegetation and lakes to past climatic change. Nature 361: 243–246.CrossRefGoogle Scholar
  27. Mölder, K. & R. Tynni, 1967–1973. Über Finnlands rezente und subfossile Diatomeen. Bull. Geol. Soc. Finland, 39: 199–217, 40: 151–170, 41: 235–251, 42: 129–144, 43: 203220, 44: 141–149, 45: 159–179.Google Scholar
  28. Moser, K. A. & G. M. MacDonald, 1990. Holocene vegetation change at treeline north of Yellowknife, Northwest Territories, Canada. Quatern. Res. 34: 227–239.Google Scholar
  29. Payette, S., L. Filion, A. Delwaide & C. Bégin, 1989. Reconstruction of tree-line vegetation response to long-term climate change. Nature 341: 429–432.CrossRefGoogle Scholar
  30. Pienitz, R., 1989. Regression of D’Iberville sea and paleolimnology of two lakes from southern central Ungava Bay. M.A. Thesis, Laval University, Québec (Québec), 126 pp.Google Scholar
  31. Pienitz, R., J. P. Smol & D. R. S. Lean, 1993. Chemical limnology of lakes from Yellowknife to Contwoyto Lake (Northwest Territories), Canada. Int. Rev. ges. Hydrobiol. (submitted).Google Scholar
  32. Servant-Vildary, S. & M. Roux, 1990. Variations de température estimées à partir du déplacement en altitude des associations de diatomées dans une séquence holocène de la Cordillère Orientale de Bolivie. C. R. Acad. Sci. Paris 311 (II): 429–436.Google Scholar
  33. Smol, J. P., 1983. Paleophycology of a high arctic lake near Cape Herschel, Ellesmere Island. Can. J. Bot. 61: 21952204.Google Scholar
  34. Smol, J. P., I. R. Walker & P. R. Leavitt, 1991. Paleolimnology and hindcasting climatic trends. Verh. int. Ver. Limnol 24: 1240–1246.Google Scholar
  35. Stevenson, A. C., H. J. B. Birks, R. J. Flower & R. W. Battarbee, 1989. Diatom-based pH reconstruction of lake acidification using canonical correspondence analysis. Ambio 18: 228–233.Google Scholar
  36. Ter Braak, C. J. F., 1987. Unimodal models to relate species to environment. Agricultural Mathematics Group, Wageningen, The Netherlands.Google Scholar
  37. Ter Braak, C. J. F., 1988. Partial canonical correspondence analysis. In Classification and related methods of data analysis (ed. H.H. Bock ), North-Holland, Amsterdam, pp. 551–558.Google Scholar
  38. Ter Braak, C. J. F., 1990. CANOCO - a FORTRAN program for CANOnical Community Ordination. Microcomputer Power, Ithaca, New York, USA (including update notes).Google Scholar
  39. Ter Braak, C. J. F. & H. van Dam, 1989. Inferring pH from diatoms: A comparison of old and new calibration methods. Hydrobiologia 178: 209–223.Google Scholar
  40. Tynni, R., 1975–1980. Über Finnlands rezente and subfossile Diatomeen. Geol. Surv. Finland, Bulletin 274: 1–55, 284: 1–37, 296: 1–55, 312: 1–93.Google Scholar
  41. Walker, I. R., J. P. Smol, D. R. Engstrom & H. J. B. Birks, 1991. An assessment of chironomidae as quantitative indicators of past climatic change. Can. J. Fish. Aquat. Sci. 48: 975–987.Google Scholar
  42. Wetzel, R. G., 1983. Limnology, 2nd edition. Saunders College Publishing, 767 pp.Google Scholar
  43. Wilkinson, L., 1988. SYSTAT: The system for statistics. SYSTAT Inc., Evanston, Illinois.Google Scholar
  44. Wright Jr., H. E., 1984. Sensitivity and response time of natural systems to climatic change in the late Quaternary. Quatern. Sci. Rev. 3: 91–131.Google Scholar
  45. Zar, J. H., 1984. Biostatistical Analysis, 2nd edn. Prentice-Hall Inc., Englewood Cliffs, N.J.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • Reinhard Pienitz
    • 1
  • John P. Smol
    • 1
  1. 1.Paleoecological Environmental Assessment and Research Laboratory (PEARL), Department of BiologyQueen’s UniversityKingstonCanada

Personalised recommendations