Diatoms in surface sediments of the Gotland Basin in the Baltic Sea

  • Tuulikki Grönlund
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 90)


A sediment core, 55 cm long, from station F81 in the Gotland Basin of the Baltic Sea was analysed for diatoms and ebridians. Chrysophyte stomatocysts found in the core were also counted but not identified. The aim was to trace environmental changes, e.g. eutrophication and salinity variations. There is evidence that eutrophication has been increasing in the Baltic Sea in recent decades.

Brackish-marine plankton diatoms dominate the entire core and reflect the local planktonic taxa rather well. The dominant taxon is the polyhalobous Actinocyclus octonarius. The main biostratigraphical change within the core analysed takes place at a depth of about 22 cm, where the abundance of diatoms, and especially of Chaetoceros spp., Thalassiosira hyberborea var. pelagica and T. baltica start to increase. This may reflect eutrophication which can be estimated to have started c. 200 years ago.

Key words

diatom flora ebridians marine sediments eutrophication Baltic Sea 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alhonen, P., A. Heino & R. Tynni, 1984. Über Vorkommen und Bedeutung von Terpsinoe americana (Bail.) Ralfs in den Ablagerungen des Litorinameeres. Bull geol Soc Finl. 56 (1–2): 117–133.Google Scholar
  2. Baltic Marine Environment Protection Commission, Helsinki Commission, 1990. Second Periodic Assessment of the State of the Marine Environment of the Baltic Sea, 1984–1988; Background Document. Baltic Sea Environment Proceedings 35 B: 432 pp.Google Scholar
  3. Cleve-Euler, A., 1951. Die Diatomeen von Schweden und Finnland. Kungl. svensk. vetenskapsakad. hands. 4 (2. 1): 163 pp.Google Scholar
  4. Edler, L, G. Hällfors & A. Niemi, 1984. A preliminary checklist of the phytoplankton of the Baltic Sea. Acta bot fenn. 128: 1–26.Google Scholar
  5. Eggimann, D., F. Manheim & P. Betzer, 1980. Dissolution and analysis of amorfous silica in marine sediments. J sediment petrol. 50, 1: 215–225.Google Scholar
  6. Elmgren, R. 1989. Man’s impact of the ecosystem of the Baltic Sea: Energy flows today and at the turn century. Ambio 6: 326–332.Google Scholar
  7. Eronen, M., 1976. A radiocarbon-dated Ancylus transgression site in south-eastern Finland. Boreas 5: 65–76.CrossRefGoogle Scholar
  8. Flower, R. J., 1993. Diatom preservation: experiments and observations on dissolution and breakage in modern and fossil material. Hydrobiologia 269 /270: 473–484.CrossRefGoogle Scholar
  9. Grönlund, T., 1992. Lists of diatom taxa from stations F81 and SR5 in the Baltic Sea. Rap. P34.4. 003 Geologian tutkimuskeskus, Maaperäosasto. 6 pp.Google Scholar
  10. Hâkansson, H. & S. Locker, 1981. Stephanodiscus Ehrenberg 1846, a revision of the species described by Ehrenberg. Nova Hedwigia 35: 117–150.Google Scholar
  11. Hällfors, G. & A. Niemi, 1975. Diatoms in surface sediment from deep basins in the Baltic proper and the Gulf of Finland. Merentutkimuslait. Julk. 240: 71–77.Google Scholar
  12. Hasle, G. R. & C. B. Lange, 1989. Freshwater and brackish water Thalassiosira (Bacillariophyceae): taxa with tangentially undulated valves. Phycologia 28: 120–135.CrossRefGoogle Scholar
  13. Hustedt, F., 1930. Die Kieselalgen Deutschlands, Österreichs und der Schweiz. In Dr. L. Rabenhorst’s KryptogamenFlora von Deutschland, Österreich und der Schweiz, 7 ( 1 ), Akademische Verlagsgesellschaft, Leipzig. 920 pp.Google Scholar
  14. Huttunen, M. & A. Nierai, 1986. Sea-ice algae in the Northern Baltic Sea. Mem Soc Fauna fenn. 62: 58–62.Google Scholar
  15. Lewin, J., 1961. The dissolution of silica from diatom walls. Geochim. cosmochim. Acta 21. 3 /4: 182–198.CrossRefGoogle Scholar
  16. Lipps. J., 1979. Ebridians. In R. W. Fairbridge & D. Jablonski (eds), Encylopedia of earth sciences. 7. Dowden, Hutchinson & Ross, Stroudsburg: 276.Google Scholar
  17. Meriläinen, J., 1973. The dissolution of diatom frustules and its paleoecological interpretation. Rapport frân diatomesymposium Lund, Maj 1973 University of Lund, Department of Quaternary Geology. Report 3: 91–95.Google Scholar
  18. Miller, U. & J. Risberg, 1990. Environmental changes, mainly eutrophication, as recorded by fossil siliceous micro-algae in two cores from the uppermost sediments of the northwestern Baltic. Nova Hedwigia 100: 237–253.Google Scholar
  19. Mölder, K., 1962. Über die Diatomeenflora des Bottnischen Meerbusens und der Ostsee. Merentutkimuslait. Julk. 203: 58 pp.Google Scholar
  20. Mölder, K. & R. Tynni, 1967. Über Finnlands rezente und subfossile Diatomeen I. Comptes Rendus de la Soc géol de Finlande 39: 1991–217.Google Scholar
  21. Mölder, K. & R. Tynni, 1968–1972 Über Finnlands rezente und subfossile Diatomeen II-VI. Bull. geol. Soc. Finl. 40: 151–170, 41: 235–251, 42: 129–144, 44: 141–159.Google Scholar
  22. Niemi, A., 1971. Late summer phytoplankton of the Kimito archipelago ( SW coast of Finland ). Merentutkimuslait Julk. 233: 3–17.Google Scholar
  23. Niemi, A.,1972. Observations on phytoplankton in eutrophied and non-eutrophied archipelago waters of the southern coast of Finland. Mem Soc Fauna Flora fenn. 48: 63–74.Google Scholar
  24. Pielou, E. C. 1966. The measurement of diversity in different types of biological collections. J theor Biol. 13: 131–144.CrossRefGoogle Scholar
  25. Renberg, I., 1981. Improved methods for sampling, photographing and varve-counting of varved lake sediments. Boreas 10: 255–258.CrossRefGoogle Scholar
  26. Risberg, J., 1986. Terpsinoe americana (Bailey) Ralfs, a rare species in the Baltic fossil diatom flora. In F. Round (ed.), Proceedings of the 9th International Diatom Symposium 1986. Biopress Bristol and S Koeltz Koenigstein: 207–218.Google Scholar
  27. Risberg, J., 1990. Siliceous microfossil stratigraphy in a superficial sediment core from the north-western part of the Baltic proper. Ambio 3: 167–172.Google Scholar
  28. Rosenberg, R., (ed.) 1984. Eutrophication in marine waters surrounding Sweden, A review. Statens naturvârdsverk, Solna. PM 1808: 140 pp.Google Scholar
  29. Saarnisto, M., 1975. Pehmeiden järvisedimenttien näytteenottoon soveltuva jäädytysmenetelmä. Geologi 27. (3): 3739.Google Scholar
  30. Salonen, V.-P., T. Grönlund, M. Sturm & I. Vuorinen, 1992 Crust-freeze sampler cores from two Baltic stations. In W. Lemke, D. Lange & R. Endler (eds), Proceedings of the Second Marine Geological Conference–The Baltic held in Rostock from Oktober 21 to October 26, 1991. Meereswiss, Ber. 4: 129–131.Google Scholar
  31. Simonsen, R., 1962. Untersuchungen zur Systematik und Ökologie der Bodendiatomeen der westlichen Ostsee. Int. Revue ges. Hydrobiol. System. Beihefte 1: 144 pp.Google Scholar
  32. Snoeijs, P., 1988. Ecological studies of epilithic algae and fauna in the Baltic hydrolittoral. Acta Universitatis Upsaliensis, Comprehensive Summaries of Uppsala Dissertations from the Faculty Science 176: 37 pp.Google Scholar
  33. Stockmarr, J., 1971. Tablets with spores used in absolute pollen analysis. Pollen et Spores 13: 615–621.Google Scholar
  34. Stockmarr, J., 1973. Determination of spore concentration with an electronic particle counter. Danm geol unders Arbog 1972: 87–89.Google Scholar
  35. Thulin, B., J. Lepiksaar & L.-K. Königsson, 1986. Enchelyopus cimbrius - Der erste Fish in einem Bohrkern aus der Ostsee und sein Miljö. Striae 24: 131–135.Google Scholar
  36. Thulin, B., G. Possnert & I. Vuorela, 1992. Stratigraphy and age of two postglacial sediment cores from the Baltic Sea. Geol fören Stockholm förhandl. 114: 165–179.CrossRefGoogle Scholar
  37. Witkowski, A., 1991. An occurrence of living Terpsinoe americana (Bailey) Ralfs in bottom sediments of the Puck Bay (the Southern Baltic Sea), Poland. Diatom Res. 6: 413–415.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • Tuulikki Grönlund
    • 1
  1. 1.Geological Survey of FinlandEspooFinland

Personalised recommendations