Skip to main content

History of Science and History of Mathematization: The Example the Science of Motion at the Turn of the 17th and 18th Centuries

  • Chapter
  • 353 Accesses

Part of the book series: Boston Studies in the Philosophy of Science ((BSPS,volume 151))

Abstract

For the sake of clarity I shall enounce, from the outset, the meaning I give to the expression “history of mathematization”:

  • It is a historical approach whose object is to examine the precise role of mathematics and its development, as a dynamic and creative factor, in the realm of mathematical physics. Or to put it differently:

  • It is an examination, based on historical examples, of the specifically mathematical impact of mathematical physics in conceptual coordination, coherence and genesis.

This paper has been translated into english by Anastasios Brenner.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. Liste des Oeuvres de Pierre Varignon“, Briefwechsel,II-1, 387–408.

    Google Scholar 

  2. AM, since 1699 (1702).

    Google Scholar 

  3. Explicit references to Newton’s Principia appear quite early under Varignon’s pen: Briefwechsel,II-1, 96 and 229 (Letters to Johann I Bernoulli dated 24 May and 12 July 1699).

    Google Scholar 

  4. AM, 1700 (1703), 84.

    Google Scholar 

  5. AM, 1707 (1708), 382.

    Google Scholar 

  6. On this issue see, in particular, Michel Blay “Deux moments de la critique du calcul infinitésimal: Michel Rolle et George Berkeley”, Revue d’Histoire des Sciences (1986), 223–253.

    Google Scholar 

  7. I have edited these Memoirs under the title “Quatre Mémoires inédits de Pierre Varignon consacrés à la science du mouvement”, Archives Internationales d’Histoire des Sciences (1989), 218–248. For an indepth study of these matters, see my book La naissance de la mécanique analytique (Paris, PUF, 1992).

    Google Scholar 

  8. A.Ac.Sc. Registres, t. 17, fol. 298 v° — 305 r°.

    Google Scholar 

  9. AH, 1700 (1703), 85.

    Google Scholar 

  10. The term “variable” belongs to the language of the period. See Analyse,“Définition I”.

    Google Scholar 

  11. A.Ac.Sc. Registres, t. 17, fol. 298 v°.

    Google Scholar 

  12. I recall that in modern terms using the concept of function (x representing space, t time, and y velocity) motion is defined by its temporal equation x = f (t) Analysis of this function will give the behavior of the point on the trajectory. The graph of the function a = f’(t) is called the diagram of accelerations. Varignon also introduces, to use current terminology, the function y = g (x),whose graph we name the first diagram of velocities (the second being that of v = f(t))

    Google Scholar 

  13. A.Ac.Sc. Registres, t. 17, fol. 298 v°.

    Google Scholar 

  14. Varignon does not define explicitely here the concept of instant. On the other hand, in his Traité du mouvement et de la mesure des eaux coulantes et jaillissantes. Avec un Traité préliminaire du Mouvement en général. Tiré des ouvrages manuscrits de feu Monsieur Varignon, par l’Abbé Pujol, published posthumously in Paris in 1725, one reads: “Définition V. Un instant est pris ici pour la plus petite portion de temps possible, et par conséquent doit être regardé comme un point indivisible d’une durée quelconque”, 3. In a Memoir dated July 6, 1607 under the title “Des mouvemens variés à volonté, comparés entr’eux et avec les uniformes”, the definition appears in a slightly different mathematical setting: “Définition I. Par le mot d’instant, nous entendons ici une particule de tems infiniment petites, c’est-à-dire, moindre que quelques grandeur assignable de tems infiniment petite, c’est-à-dire, moindre que quelque grandeur assignable de tems que ce soit: c’est ce qu’en langage des Anciens l’on appelleroit minor quavis quantitate data…”, AM, 1707 (1708), 222.

    Google Scholar 

  15. A.Ac.Sc. Registres, t. 17, fol. 298 v°.

    Google Scholar 

  16. Ibid., fol. 298 v° — 299 r°.

    Google Scholar 

  17. AM, 1707 (1708), 222–274.

    Google Scholar 

  18. Ibid., 223.

    Google Scholar 

  19. I will use either the expression “Leibnizian calculus” or “calculus of differences” rather than “differential calculus”, which could imply too modern an approach. In the Analyse des infiniment petits pour l’intelligence des lignes courbes (Paris, 1696) of L’Hospital, one reads: “Définition II. La portion infiniment petite dont une quantité variable augmente ou diminue continuellement, en est appelée la différence”, 1

    Google Scholar 

  20. Analyse, 2.

    Google Scholar 

  21. Varignon will also call this concept “vitesse instantanée”, AM,1701 (1708), 224. I nevertheless prefer to speak of the velocity at each instant; for Varignon interprets the expression dx/dt not as a derivative but rather as a quotient. See especially A.AC.Sc. Registres,t. 17, fol. 386 r°.

    Google Scholar 

  22. Traité du mouvement…, 22.

    Google Scholar 

  23. A.Ac.Sc. Registres, t. 17, fol. 299 r°.

    Google Scholar 

  24. Ibid., t. 17, fol. 386 r° - 391 v°.

    Google Scholar 

  25. Ibid., fol. 387 r°.

    Google Scholar 

  26. See Analyse, 3.

    Google Scholar 

  27. KG represents the distance covered along its trajectory GG. This point K, the origin of the motion along the trajectory, will be very useful in the rest of the Memoir.

    Google Scholar 

  28. A.Ac.Sc. Registres, t. 17, fol. 387 r°.

    Google Scholar 

  29. In 1697 and 1698 Varignon already worked on the problem of isochronous fall in the case of the reversed cycloid, but this procedure remained geometrical and did not belong to an approach using the concept of velocity at each instant.

    Google Scholar 

  30. La courbe cc“ corresponds to the first diagram of velocities (see above note 12).

    Google Scholar 

  31. A.Ac.Sc. Registres, t. 17, fol. 387 v°.

    Google Scholar 

  32. Ibid., fol. 391 r° - 391 v°.

    Google Scholar 

  33. Supra Note 7.

    Google Scholar 

  34. AM, 1700 (1703), 22–27; A.Ac.Sc. Registres, t. 19, fol. 31 r° - 37 r°.

    Google Scholar 

  35. AM, 1700 (1703), 893–101; A.Ac.Sc. Registres, t. 19, fol. 133 v° - 141 v°.

    Google Scholar 

  36. AM, 1700 (1703), 218–237; A.Ac.Sc. Registres, t. 19, fol. 360 v° - 364 v°.

    Google Scholar 

  37. AM, 1700 (1703), 22. The expression “force centrale” seems somewhat ambiguous; for Varignon, at no point, explicitly introduces any consideration of the mass.

    Google Scholar 

  38. A.Ac.Sc. Registres, t. 19, fol. 31 r°.

    Google Scholar 

  39. Ibid., fol. 31 r°.

    Google Scholar 

  40. Ibid., fol. 31 r°.

    Google Scholar 

  41. AM, 1700 (1703), 22.

    Google Scholar 

  42. Ibid., 23.

    Google Scholar 

  43. Varignon by “faisant dt constante” merely makes use of procedures current at the time of Leibnizian calculus. On this issue, see H. J. M. Bos, “Differentials, Higher-Order Differentials and the Derivative in the Leibnizian Calculus”, Archive for History of Exact Sciences (1974–1975), 3–90.

    Google Scholar 

  44. See also E. J. Aiton, “The Inverse Problem of Central Forces”, Annals of Science (1964), 86, note 17.

    Google Scholar 

  45. AM, 1700 (1703), 23.

    Google Scholar 

  46. Principia, translated into English by Andrew Motte in 1729 (University of California Press, 1934, 1962), 34–35.

    Google Scholar 

  47. AM, 1700 (1703), 23.

    Google Scholar 

  48. Auguste Comte, Philosophie première, cours de philosophie positive, leçons I à 45 (Paris, Hermann, 1975), dix-septième leçon, 268.

    Google Scholar 

  49. AM, 1700 (1703), 23.

    Google Scholar 

  50. Ibid., 26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Blay, M. (1994). History of Science and History of Mathematization: The Example the Science of Motion at the Turn of the 17th and 18th Centuries. In: Gavroglu, K., Christianidis, J., Nicolaidis, E. (eds) Trends in the Historiography of Science. Boston Studies in the Philosophy of Science, vol 151. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3596-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3596-4_30

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4264-4

  • Online ISBN: 978-94-017-3596-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics