Skip to main content

The Chemistry of the Dihydrogen Ligand in Transition Metal Compounds with Sulphur-Donor Ligands

  • Chapter

Part of the book series: NATO ASI Series ((ASHT,volume 60))

Abstract

Transition metal hydride species have been implicated in the mechanism of action of the industrial catalysts used for hydrodesulphurization (HDS) and the natural enzymes nitrogenase and iron- and iron-nickel hydrogenases. Common features of these mechanisms are that the hydride reactions occur at a metal centre coordinated by at least two sulphur ligands, that dihydrogen gas is formed or activated and that various H/D exchange processes involving D2(g) are catalysed by the metal centres. The topic of this paper is another possible common feature — the presence of the η2-dihydrogen ligand; that is H2 coordinated side-on to the metal with the H-H bond intact.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kubas, G.J., Ryan, R.R., Swanson, B.I., Vergamini, P.J. and Wasserman, H.J. (1984) Characterization of the first examples of isolable molecular hydrogen complexes, M(CO)3(PR3)(H2) (M = Mo, W; R = Cy, i-Pr). Evidence for a Side-on Bonded H2 Ligand, J. Am. Chem. Soc. 106, 451–452.

    Article  CAS  Google Scholar 

  2. Heinekey, D.M. and Oldham, W.J.Jr (1993) Coordination chemistry of dihydrogen, Chem. Rev. 93, 913–926.

    Article  CAS  Google Scholar 

  3. Jessop, P.G. and Morris, R.H. (1992) Reactions of transition metal dihydrogen complexes, Coord. Chem. Rev. 121, 155–284.

    Article  CAS  Google Scholar 

  4. Morris, R.H. and Wittebort, R. (1997) Effect of libration or hopping of the dihydrogen ligand on its spin-lattice relaxation time, Mag. Res. Chem. 35, 243–250.

    Article  CAS  Google Scholar 

  5. Chianelli, RR (1984) Fundamental studies of transition metal sulfide hydrodesulfurization catalysts, Catal. Rev.-Sci. Eng. 26, 361–393.

    Article  CAS  Google Scholar 

  6. Startsev, A.N. (1995) The Mechanism of HDS Catalysis, Catal. Rev. - Sci. Eng. 37, 353423.

    Google Scholar 

  7. Anderson, A.B., Al-Saigh, Z.Y. and Hall, W.K. (1988) Hydrogen on MoS2. Theory of its heterolytic and homolytic chemisorption, J. Phys. Chem. 92, 803–809.

    Article  CAS  Google Scholar 

  8. Neurock, M. and van Santen, R.A. (1994) Theory of carbon-sulfur bond activation by small metal sulfide particles, J. Am. Chem. Soc. 116, 4427–4439.

    Article  CAS  Google Scholar 

  9. Lacroix, M., Yuan, S., Breysse, M., Doremieux-Morin, C. and Fraissard, J. (1992) Hydrogen on unsupported ruthenium sulfide: thermodesorption and ‘H NMR studies, J. Catal. 138, 409–412.

    Article  CAS  Google Scholar 

  10. Friend, C.M. and Chen, D.A. (1997) Fundamental-studies of hydrodesulfurization by metal-surfaces, Polyhedron 16, 3165–3175.

    Article  CAS  Google Scholar 

  11. Burrow, T.E., Hughes, D.L., Lough, A.J., Maguire, M.J., Morris, R.H. and Richards, R.L. (1995) Cleavage of an aryl carbon-sulfur bond in hydride-thiolate complexes of molybdenum and tungsten. X-ray Crystal Structures of [{Mo(SC6H2Pr’32,4,6)(OMe)(PMePh2)}2(1-S)2] and [{Mo(SC6H2Pr’3–2,4,6)(OEt)(PEtPh2))2(11-S)2], J. Chem. Soc., Dalton Trans. 2583–2589.

    Google Scholar 

  12. Rakowski Dubois, M. (1997) Carbon-chalcogen bond-cleavage reactions characterized for dinuclear sulfur-bridged cyclopentadienyl molybdenum complexes, Polyhedron 16, 3089–3098.

    Article  Google Scholar 

  13. Sierraalta, A. and Ruette, F. (1996) H2 interaction with S atoms of a MoS2 modeled catalytic site: electronic density analysis for S-H formation, J. Mol. Cat. A 109, 227–238.

    Google Scholar 

  14. Laurie, J.C.V., Duncan, L., Haltiwanger, RC., Weberg, RT. and Rakowski Dubois, M. (1986) Activation of hydrogen by cationic cyclopentadienyl molybdenum dimers with sulfido ligands. 1. cationic complexes derived from protonation of 1,2-alkenedithiolate ligands, J. Am. Chem. Soc. 108, 6234–6241.

    Article  CAS  Google Scholar 

  15. Burgess, B.K. and Lowe, D.J. (1996) Mechanism of molybdenum nitrogenase, Chem. Rev. 96, 2983–3011.

    Article  CAS  Google Scholar 

  16. Crabtree, R.H. (1986) Dihydrogen binding in hydrogenase and nitrogenase, Inorg. Chim. Acta 125, L7 - L8.

    Article  CAS  Google Scholar 

  17. Volbeda, A., Garcia, E., Piras, C., Delacey, A.L., Fernandez, V.M., Hatchikian, E.C., Frey, M. and Fontecillacamps, J.C. (1996) Structure of the [NiFe] hydrogenase active-site: evidence for biologically uncommon Fe ligands, J. Am. Chem. Soc. 118, 12989–12996.

    Article  CAS  Google Scholar 

  18. Amrhein, P.I., Drouin, S.D., Forde, C.E., Lough, A.J. and Morris, R.H. (1996) Ancillary ligand control of reactivity. Protonation at hydride versus cyanide in trans[FeH(CN)(R2PCH2CH2PR2)2] (R = Et, Ph and p-tolyl) and X-ray crystal structure determination of trans-[FeH(CNH)(R2PCH2CH2PR2)2](BF4) R = p-tolyl, J. Chem. Soc., Chem. Commun. 1665–1666.

    Google Scholar 

  19. Thauer, R.K., Klein, A.R. and Hartmann, G.C. (1996) Reactions with molecular-hydrogen in microorganisms: evidence for a purely organic hydrogenation catalyst, Chem. Rev. 96, 3031–3042.

    Article  CAS  Google Scholar 

  20. Albinati, A., Klooster, W., Koetzle, T.F., Fortin, J.B., Ricci, J.S., Eckert, J., Fong, T.P., Lough, A.J., Morris, R.H. and Golombek, A. (1997) Single crystal X-ray and neutron diffraction structure determination and inelastic neutron scattering study of the dihydrogen complex trans-[Ru(H2)H(dppe)2]BPh4, Inorg. Chim. Acta 259, 351–357.

    Article  CAS  Google Scholar 

  21. Maltby, P.A., Steinbeck, M., Lough, A.J., Morris, R.H., Klooster, W.T., Koetzle, T.F. and Srivastava, R.C. (1996) Dihydrogen with frequency of motion near the 111 larmor frequency: solid-state structures and solution NMR-spectroscopy of osmium complexes trans-[Os(H-H)X(PPh2CH2CH2PPh2)2]+ (X = Cl, Br), J. Am. Chem. Soc. 118, 5396–5407.

    Article  CAS  Google Scholar 

  22. Hasegawa, T., Li, Z., Parkin, S., Hope, H., McMullan, R.K., Koetzle, T.F. and Taube, H. (1994) Determination of the structure of [O02–H2)en2(CH3CO2)JPF6 by X-ray and neutron diffraction, J. Am. Chem. Soc. 116, 4352–4356.

    Article  CAS  Google Scholar 

  23. Bau, R., Carroll, W.E. Hart, D.W., Teller, R.G. and Koetzle, T.F. (1977) Crystallographic investigations on polyhydride metal complexes, in R Bau (ed.), Transition Metal Hydrides, Advances in Chemistry Series 167, Amer. Chem. Soc. Washington, pp. 73–92.

    Google Scholar 

  24. King, W.A., Luo, X.L., Scott, B.L., Kubas, G.J. and Zilm, K.W. (1996) Cationic manganese(I) dihydrogen and dinitrogen complexes derived from a formally 16-electron complex with a bis-agostic interaction, [Mn(CO)(Ph2PCH2CH2PPh2)2]+, J. Am. Chem. Soc. 118, 6782–6783.

    Article  CAS  Google Scholar 

  25. Eckert, J., Albinati, A., Bucher, U.E. and Venanzi, L.M. (1996) Nature of the Rh-H2 bond in a dihydrogen complex stabilized only by nitrogen donors: inelastic neutron-scattering study of Tp(Me)zRhH2(12-Hz) (Tp(Me)2 = hydrotris(3,5- dimethylpyrazolyl)borate), Inorg. Chem. 35, 1292–1294.

    Article  CAS  Google Scholar 

  26. Kubas, G.J. (1988) Molecular hydrogen complexes of the transition metals, Acc. Chem. Res. 21, 120–128.

    Article  Google Scholar 

  27. Zilm, K.W. and Millar, J.M. (1990) Solid state and solution NMR of non-classical transition metal polyhydrides, Adv. Magn. Opt. Reson. 15, 163–200.

    CAS  Google Scholar 

  28. Morris, R.H., Xu, W. and MacDonald, P.M. (1995) PACIFICCHEM Conference, Hawaii, INOR 1077.

    Google Scholar 

  29. Kubas, G.J., Nelson, J.E., Bryan, J.C., Eckert, J., Wisniewski, L. and Zihn, K. (1994) Isolation of an extremely labile dihydrogen complex, Cr(CO)3(PPr’3)2(H2), containing the shortest ligated H-H bond, Inorg. Chem. 33, 2954–2960.

    Article  CAS  Google Scholar 

  30. Kubas, G.J., Unkefer, C.J., Swanson, B.I. and Fukushima, E. (1986) Molecular hydrogen complexes of the transition metals. 4. Preparation and characterization of M(CO)3(PR3)2(H2) (M = molybdenum, tungsten) and evidence for equilibrium dissociation of the H-H bond to give MH2(CO)3(PR3)2, J. Am. Chem. Soc. 108, 70007009.

    Google Scholar 

  31. Eckert, J., Jensen, C.M., Jones, G., Clot, E. and Eisenstein, O. (1993) An extremely low barrier to H2 rotation in IrC1H2(H2)(P’Pr3)2, J Am. Chem. Soc. 115, 11056–11057.

    Article  CAS  Google Scholar 

  32. Eckert, J., Blank, H., Bautista, M.T. and Morris, R.H. (1990) Dynamics of molecular hydrogen in the complex trans-[Fe02-H2)(H)(PPh2CH2CH2PPh2)2]BF4 in the solid state as revealed by neutron-scattering experiments, Inorg. Chem. 29, 747–750.

    Article  CAS  Google Scholar 

  33. Jobic, H., Clugnet, G., Lacroix, M., Yuan, S.B., Mirodatos, C. and Breysse, M. (1993) Identification of new hydrogen species adsorbed on ruthenium sulfide by neutron spectroscopy, J. Am. Chem. Soc. 115, 3654–3657.

    Article  CAS  Google Scholar 

  34. Sampson, C., Thomas, J.M., Vasudevan, S. and Wright, C.J. (1981) A preliminary investigation of the sorption of hydrogen at high pressure by MoS2, Bull. Soc. Chim. Belg. 90, 1215–1224.

    Article  CAS  Google Scholar 

  35. Wright, C.J., Sampson, C., Fraser, D., Moyes, R.B. and Wells, P.B. (1980) Hydrogen sorption by molybdenum sulphide catalysts, J. Chem. Soc. Faraday 176, 1585–1598.

    Google Scholar 

  36. Gusev, D.M., Vymenits, A.B. and Bakhmutov, V.I. (1992) Reactions of RuHC1(CO)(P’Pr3)2 with H2 in solution. new molecular hydrogen complexes of Ruthenium: RuH(H2)Cl(CO)(P’Pr3)2 and Ru(H)2(H2)(CO)(P’Pr3)2., Inorg. Chem. 31, 1–2.

    Article  CAS  Google Scholar 

  37. Hughes, D.L., Lazarowych, N.J., Maguire, M.J., Morris, R.H. and Richards, R.L. (1995) 5-Coordinate complexes [MoH(SC6H2R3–2,4,6)3(PR1Ph2)] (R=Me or ‘Pr, R’=Me, Et, Bu) and their reactions with nitrogen-donor Ligands. X-ray crystal structures of [MoH(SC6H2Pr’3–2,4,6)3(NC5H5)(PMe2Ph)], [MoH(NC5H4–2-S)2(SC6H2Pr’3- 2,4,6)(PEtPh2)] and [PPh4][MoO(SC6H2Pr’3–2,4,6)4], J. Chem. Soc., Dalton Trans. 5–15.

    Google Scholar 

  38. Burrow, T.E., Lough, A.J., Morris, R.H. and Richards, R.L. (1995) Elucidation of the structures of the hydridothiolato complexes WH(SC6H2Pr’3–2,4,6)3(L)(PMe2Ph), L = PMe2Ph or pyridine, by NMR and X-Ray techniques, Can. J. Chem. 73, 1092–1101.

    Article  CAS  Google Scholar 

  39. Chin, B., Lough, A.J., Morris, R.H., Schweitzer, C.T. and Dagostino, C. (1994) Influence of chloride versus hydride on H-H bonding and acidity of the trans dihydrogen ligand in the complexes trans-[Ru(H2)X(PR2CH2CH2PR2)2]+, X = Cl, H, R = Ph, Et. Crystal structure determinations of [RuCl(dppe)2]PF6 and trans-[Ru(H2)C1(dppe)2]PF6, Inorg. Chem. 33, 6278–6288.

    Article  CAS  Google Scholar 

  40. Schlaf, M., Lough, A.J. and Morris, R.H. (1993) [Os(r12-H2)(CO)(pyS)(PPh3)2]BF4–a stable but highly acidic dihydrogen complex, Organometallics 12, 3808–3809.

    Google Scholar 

  41. Albeniz, M.J., Buil, M.L., Esteruelas, M.A., Lopez, A.M., Oro, L.A. and Zeier, B. (1994) Synthesis and preparation of the dithioformato complex OsH012–S2CH)(CO)(P’Pr3)2, Organometallics 13, 3746–3748.

    Article  CAS  Google Scholar 

  42. Bartucz, T.Y., Golombek, A., Lough, A.J., Maltby, P.A., Morris, R.H., Ramachandran, R. and Schlaf, M. Protonation reactions of trans-M(H)(SPh)(dppe)2, M = Ru, Os to give thiol and dihydrogen complexes; the X-ray crystal structure determination of transRu(H)(SPh)(dppe)2 and trans-[Os(H)(O2)(dppe)2](O3CCF3), Inorganic Chemistry,in press.

    Google Scholar 

  43. Esteruelas, M.A., Oro, L.A. and Ruiz, N. (1993) Synthesis of the first M(12–112) complexes containing S-donor ligands, Inorg Chem 32, 3793–3794.

    Article  CAS  Google Scholar 

  44. Christ, M.L., Saboetienne, S. and Chaudret, B. (1994) Synthesis, characterization, and chemistry of 16-electron dihydrogen complexes of ruthenium, Organometallics 13, 3800–3804.

    Article  CAS  Google Scholar 

  45. Moreno, B., Saboetienne, S., Chaudret, B., Rodriguez, A., Jalon, F. and Trofimenko, S. (1995) Synthesis and reactivity of hydridotris(pyrazolyl) borate dihydrogen ruthenium complexes, J. Am. Chem. Soc. 117, 7441–7451.

    Article  CAS  Google Scholar 

  46. Li, Z.W. and Taube, H. (1994) Dihydrogen as a coligand in substitution and cis/trans isomerization reactions, J. Am. Chem. Soc. 116, 9506–9513.

    Article  CAS  Google Scholar 

  47. Field, L.D., Hambley, T.W. and Yau, B.C.K. (1994) Formation of ruthenium thiolates via complexes of molecular hydrogen, Inorg. Chem. 33, 2009–2017.

    Article  CAS  Google Scholar 

  48. Cappellani, E.P., Drouin, S.D., Jia, G., Maltby, P.A., Morris, R.H. and Schweitzer, C.T. (1994) Effect of the ligand and metal on the pKa values of the dihydrogen ligand in the series of complexes [M(H2)H(L)2]+, M = Fe, Ru, Os containing isosteric ditertiaryphosphine ligands, L, J. Am. Chem. Soc. 116, 3375–3388.

    Article  CAS  Google Scholar 

  49. Carlton, L. (1990) The reaction of [Rh(H)(PPh3)4] with thiols: a iH and 31P NMR study, J. Organomet. Chem. 389, 139–147.

    Article  CAS  Google Scholar 

  50. Earl, K.A., Jia, G., Maltby, P.A. and Morris, R.H. (1991) if-Dihydrogen on the brink of homolytic cleavage–Trans-[Os(HH)H(PEt2CH2CH2PEt2)2]+ has spectroscopic and chemical properties between those of the isoelectronic complexes trans[OsH(PPh2CH2CH2PPh2)2(r12-H2)]+ and ReH3(PPh2CH2CH2PPh2)2, J. Am. Chem. Soc. 113, 3027–3039.

    Google Scholar 

  51. Gusev, D. and Morris, R.H. in progress.

    Google Scholar 

  52. Mezzetti, A., Del Zotto, A., Rigo, P. and Farnetti, E. (1991) Dihydrogen and hydrido complexes via hydrogen addition to d6 5-coordinate complexes of ruthenium and osmium with 1,2-bis(dicyclohexylphosphino)ethane, J. Chem. Soc., Dalton Trans. 1525–1530.

    Google Scholar 

  53. Kubas, G.J., Ryan, R.R. and Unkefer, C.J. (1987) Molecular hydrogen complexes. 5. Electronic control of r12-H2 vs. dihydride coordination. Dihydride structure of MoH2(CO)(R2PC2H4PR2)2 for R = Et, iso-Bu versus r12-H2 for R = Ph, J. Am. Chem. Soc. 109, 8113–8115.

    Article  CAS  Google Scholar 

  54. Morris, R.H. (1992) Ligand additivity effects and periodic trends in the stability and acidity of octahedral r12-dihydrogen complexes of d6 transition metal ions, Inorg. Chem. 31, 1471–1478.

    Article  CAS  Google Scholar 

  55. Forde, C.E., Landau, S.E. and Morris, R.H. (1997) Dicationic iron(II) complexes with dihydrogen trans to n-acid ligands: trans-[Fe02-H2)(L)(dppe)2]+2 (L = CO, CNH). Is there Fe-H2 n-backbonding?, J. Chem. Soc., Dalton Trans. 1663–1664.

    Google Scholar 

  56. Kubas, G.J., Burns, C.J., Eckert, J., Johnson, S.W., Larson, A.C., Vergamini, P.J., Unkefer, C.J., Khalsa, G.R.K., Jackson, S.A. and Eisenstein, O. (1993) Neutron structure and inelastic-neutron-scattering and theoretical studies of Mo(CO)(H2){(C6D5)2PC2H4P(C6D5)2}2.4.5C6D6, a complex with an extremely low barrier to H2 rotation–implications on the reaction coordinate for H-H cleavage to dihydride, J. Am. Chem. Soc. 115, 569–581.

    Google Scholar 

  57. Craw, J.S., Bacskay, G.B. and Hush, N.S. (1994) Stretched molecular hydrogen complexes of osmium(II): A quantum chemical study of the influence of the trans ligand on geometries, spin-spin coupling constants, bonding, and charge distributions, J. Am. Chem. Soc. 116, 5937–5948.

    Article  CAS  Google Scholar 

  58. Penis, E., Lee, J.C. and Crabtree, R.H. (1994) Intramolecular N-H-X-Ir (X = H, F) hydrogen bonding in metal complexes, J Chem. Soc., Chem. Commun. 2573.

    Google Scholar 

  59. Park, S., Ramachandran, R, Lough, A.J. and Morris, R.H. (1994) A New Type of intramolecular H•••H•••H interaction involving N-H•••H(Ir)•••H-N atoms. Crystal and molecular structure of [IrH(r1’-SC4H4NH)2012-SC4H4N)(PCy3)]BF4.0.72 CH2C12, J. Chem. Soc., Chem. Commun. 2201–2202.

    Google Scholar 

  60. Jessop, P.G. and Morris, R.H. (1993) The H/D exchange reactions of an iridium dithiol complex, Inorg. Chem. 32, 2236–2237.

    Article  CAS  Google Scholar 

  61. Lough, A.J., Park, S., Ramachandran, R and Morris, R.H. (1994) Switching on and off a new intramolecular hydrogen-hydrogen interaction and the heterolytic splitting of dihydrogen. Crystal and molecular structure of [Ir{H(SC5H4NH))2(PCy3)2](BF4)2.7CH2C12i J. Am. Chem. Soc. 116, 8356–8357.

    Article  CAS  Google Scholar 

  62. Crabtree, R.H., Siegbahn, P.E.M., Eisenstein, O. and Rheingold, A.L. (1996) A new intermolecular interaction: unconventional hydrogen-bonds with element-hydride bonds as proton acceptor, Acc. Chem. Res. 29, 348–354.

    Article  CAS  Google Scholar 

  63. Lee Jr, J.C., Rheingold, A.L., Muller, B., Pregosin, P.S. and Crabtree, R.H. (1994) Complexation of an amide to iridium via an iminol tautomer and evidence for an Ir-W-HO hydrogen bond, J. Chem. Soc., Chem. Comm. 1021–1022.

    Google Scholar 

  64. Park, S., Lough, A.J. and Morris, R.H. (1996) Iridium(III) complex Containing a unique bifurcated hydrogen bond interaction involving Ir-H•••H(N)•••F-B atoms. Crystal and molecular structure of [IrH01’-SC5H4NH)(12-SC5H4N)(PPh3)2](BF4)•0.22C6H14, Inorg. Chem. 35, 3001–3006.

    Article  CAS  Google Scholar 

  65. Xu, W., Lough, A.J. and Morris, R.H. (1996) Competition between NH•••HIr intramolecular proton-hydride interactions and NH•••FBF3 or NH•»O intermolecular hydrogen bonds involving [IrH(2-thiazolidinethione)4(PCy3)](BF4)2 and related complexes, Inorg. Chem. 35, 1549–1555.

    Article  CAS  Google Scholar 

  66. Carlton, L. (1997) Rhodium-103 NMR of carboxylate and thiolate complexes by indirect detection using phosphorus, Mag. Res. Chem. 35, 153–158.

    Article  CAS  Google Scholar 

  67. Bonnet, J.J., Thorez, A., Maisonnat, A., Galy, J. and Poilblanc, R (1979) Thiolatobridged dinuclear d8 Ir(I) complexes and their hydrogenation to form dihydridoiridium(II) (Ir-Ir) Complexes, J. Am. Chem. Soc. 101, 5940–5949.

    Article  CAS  Google Scholar 

  68. Kubiak, C., Woodcock, C. and Eisenberg, R (1980) Molecular A-frames. [Ir2(.tS)(CO)2(PPh2CH2PPh2)]. Its reaction with CO and H2 and the structure of the carbonyl adduct, Inorg. Chem. 19, 2733–2739.

    Article  CAS  Google Scholar 

  69. Bianchini, C., Herrera, V., Jimenez, M.V., Meli, A., Sanchez-Delgado, RA. and Vim, F. (1995) The catalytic transformation of benzo(b)thiophene to 2-ethylthiophenol by a soluble rhodium complex., J. Am. Chem. Soc. 117, 8567–8575.

    Article  CAS  Google Scholar 

  70. Bianchini, C., Mealli, C., Peruzzini, M. and Zanobini, F. (1992) Reversible uptake of H2 and N2 at cobalt in the solid state–influence of the counter anion on the formation of classical dihydride vs nonclassical r12-dihydrogen forms of [(PP3)CoH2]+, J. Am. Chem. Soc. 114, 5905–5906.

    Article  CAS  Google Scholar 

  71. Shubina, E.S., Belkova, N.V., Krylov, A.N., Vorontsov, E.V., Epstein, L.M., Gusev, D.G., Niedermann, M. and Berke, H. (1996) Spectroscopic evidence for intermolecular MH-HOR hydrogen-bonding interaction of WH(CO)2(NO)L2 hydrides with acidic alcohols., J. Am. Chem. Soc. 118, 1105–1112.

    Article  CAS  Google Scholar 

  72. Lever, A.B.P. (1990) Electrochemical correlations, Inorg. Chem. 29, 1271–1285.

    Article  CAS  Google Scholar 

  73. Schlaf, M., Lough, A.J. and Morris, R.H. (1996) Dihydrogen thiolate vs. hydride thiol: reactivity of the series of complexes MH(CO)(L)(PPh3)2, M = Ru, Os, L = pyridine-2thiolate, quinoline-8-thiolate with acid. X-ray structure determination of [Os(CO)(µ2Spy)(pySH)(PPh3)]2{BF4}2, Organometallics 15, 4423–4436.

    Article  CAS  Google Scholar 

  74. Rodriguez, J.A. (1997) Properties of Fe, Co, Ni, Cu and Zn on S/Mo(110) surfaces and MoSX films: metal-metal interactions and the behavior of HDS catalysts, Polyhedron 16, 3177–3184.

    Article  CAS  Google Scholar 

  75. Schlaf, M. and Morris, R.H. (1995) A dihydrogen complex, [Os(i2- H2)(CO)(quS)(PPh3)2]+, in equilibrium with its coordinated thiol tautomer (quS = quinoline-8-thiolate), J. Chem. Soc., Chem. Commun. 625–626.

    Google Scholar 

  76. Sellmann, D., Käppler, J. and Moll, M. (1993) Transition metal complexes with sulfur ligands; 96. Hydrogenase model reactions: Dz/H+ exchange at metal sulfur centers catalyzed by [Rh(H)(CO)(’buS4’)] (’buS4’ z“ = 1,2-bis((2-mercapto-3,5-di-tert- butylphenyl)thio)ethanato(2-)), J. Am. Chem. Soc. 115, 1830–1835.

    Article  CAS  Google Scholar 

  77. Sweeney, Z.K., Poise, J.L., Andersen, R.A., Bergman, R.G. and Kubinec, M.G. (1997) Synthesis, structure and reactivity of monomeric titanocene sulfido and disulfide complexes. Reaction of H2 with a terminal M=S bond, J. Am. Chem. Soc. 119, 4543–4544.

    Article  CAS  Google Scholar 

  78. Bianchini, C., Mealli, C., Meli, A. and Sabat, M. (1986) Reversible double addition of hydrogen on a bis(µ-sulfido) binuclear rhodium complex, Inorg. Chem. 25, 4617–4618.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Morris, R.H. (1998). The Chemistry of the Dihydrogen Ligand in Transition Metal Compounds with Sulphur-Donor Ligands. In: Weber, T., Prins, R., van Santen, R.A. (eds) Transition Metal Sulphides. NATO ASI Series, vol 60. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3577-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3577-3_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5100-4

  • Online ISBN: 978-94-017-3577-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics