Skip to main content

Reaction Dynamics during C-S Bond Breaking in Sulphur-Containing Molecules: Isotope Studies

  • Chapter
Transition Metal Sulphides

Part of the book series: NATO ASI Series ((ASHT,volume 60))

Abstract

The demand for new and more effective catalysts for the oil processing industry is growing. Reasons for this are: first, it has become necessary to use heavier fractions for processing and, second, processed products must meet strict ecological requirements Among a vast range of possible combinations of catalytic systems it is sometimes difficult to select the right one for a given process. Hence it becomes increasingly important to determine selection criteria for developing commercial catalysts, an ultimate goal of fundamental studies in the field of hydrotreating catalysis. Such studies deal with the following aspects:

  1. (i)

    catalyst structure and, in particular, active site structure;

  2. (ii)

    the functioning of the active site in the course of the reaction and reaction mechanisms on sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Delmon, B. (1995) Selectivity in HDS, HDN, HDO and the hydrocracking contribution of remote control and other new concepts, Bull. Soc. Chim. Belg. 104, 173–187.

    Article  CAS  Google Scholar 

  2. Isagulyants, G. V., Rozengart, M. I., and Dubinsky, Yu. G. (1983) Catalytic aromatization of aliphatic hydrocarbons, Nauka, Moscow (in Russian).

    Google Scholar 

  3. Ozaki, A. (1977) Isotope studies of heterogeneous catalysis, Kodansha Ltd, Tokyo.

    Google Scholar 

  4. Melander, L. and Saunders, W. H. (1980) Reaction rates of isotopic molecules, John Wiley Sons Inc., New York-Chichester-Brisbane-Toronto.

    Google Scholar 

  5. Cawley, C. M. and Hall, C. C. (1943) The hydrogenation of some sulphur compounds, J. Soc. Chem. Ind. 62, 116–119.

    Article  CAS  Google Scholar 

  6. Griffith, R. H., Marsh, J. D. F., and Newling, W. B. S. (1949) The catalytic decomposition of simple heterocyclic compounds. II. Reaction kinetics and mechanism, Proc. Roy. Soc., London A 197, 194–201.

    CAS  Google Scholar 

  7. Komarewsky, V. I., and Knaggs, E. A. (1951) Hydrogenolysis of thiophene over vanadium oxide, Ind. Eng. Chem. 43, 1414–1417.

    Article  CAS  Google Scholar 

  8. Kolboe, S. (1969) The catalytic decomposition of simple heterocyclic compounds. II. Reaction kinetics and mechanism, Can. J. Chem. 47, 352–355.

    Article  CAS  Google Scholar 

  9. Owens, P. Z., and Amberg, C. H. (1962) Hydrodesulphurization of thiophene. II. Reactions over a chromia catalyst, Can. J. Chem. 40, 941–946.

    Article  CAS  Google Scholar 

  10. Owens, P. Z. and Amberg, C. H. (1962) Hydrodesulphurization of thiophene. III. Adsorption of reactants and products on chromia, Can. J. Chem. 40, 947–957.

    Article  CAS  Google Scholar 

  11. Desikan, P. and Amberg, C. H. (1963) Catalytic hydrodesulphurization of thiophene. IV. The methylthiophenes, Can. J. Chem. 41, 1966–1971.

    Article  CAS  Google Scholar 

  12. Desikan, P. and Amberg, C. H. (1964) Catalytic hydrodesulfurization of thiophene. V. The hydrothiophenes. Selective poisoning and acidity of the catalyst surface, Can. J. Chem. 42, 843–850.

    Article  CAS  Google Scholar 

  13. Amberg, C. H. (1974) Molybdenum in hydrodesulfurization catalysts, J. Less-Comm. Met. 36, 339–352.

    Article  CAS  Google Scholar 

  14. Lipsch, J. M. J. G. and Schuit, G. C. A. (1969) The CoO-MoO3-Al203 catalyst. I. Cobalt molybdate and the cobalt oxide molybdenum oxide system, J. Catal. 15, 163–173.

    Article  CAS  Google Scholar 

  15. Lipsch, J. M. J. G, and Schuit, G. C. A. (1969) The CoO-Mo03-Al203 catalyst. II. The structure of the catalyst, J. Catal. 15, 174–178.

    Article  CAS  Google Scholar 

  16. Lipsch, J. M. J. G. and Schuit, G. C. A. (1969) The CoO-Mo03-Al203 catalyst. III. Catalytic properties, J. Catal. 15, 179–189.

    Article  CAS  Google Scholar 

  17. Tauster, S. J., Pecoraro, T. A., and Chianelli, R. R. (1980) Structure and properties of molybdenum sulfide: correlation of 02 chemisorption with hydrodesulfurization activity, J. CataL 63, 515–519.

    Article  CAS  Google Scholar 

  18. Bacheler, J., Duchet, J. C., and Comet, D. (1981) Carbon monoxide and oxygen as probe molecules for HDS active sites, Bull. Soc. Chim. Belg. 90, 1301–1309.

    Google Scholar 

  19. Topside, H., Candia, R., Topside, N.-Y., and Clausen, B. S. (1984) On the state of the Co-MoS model, Bull. Soc. Chim. Belg. 93, 783–806.

    Article  Google Scholar 

  20. Topside, N.-Y. and Topside, H. (1983) Characterization of the structures and active sites in sulfided Co-Mo/Al203 and Ni-Mo/Al203 catalysts by NO chemisorption, J. Catal. 84, 386401.

    Google Scholar 

  21. Farragher, A. L. (1979) Surface vacancies in close packed crystal structures, Adv. Colloid lnterf Sci. 11, 3–41.

    Article  CAS  Google Scholar 

  22. Wambeke, A., Jalowiecki, L., Kasztelan, S., Grimblot, J., and Bonnelle, J. P. (1988) The active site for isoprene hydrogenation on MoS2/Al203 catalysts, J. Catal. 109, 320–328.

    Article  CAS  Google Scholar 

  23. Jalowiecki, L., Grimblot, J., and Bonnelle, J. P. (1988) Quantitative detection of reactive hydrogen on MoS2/Al2O3 and Al2O3, J. Catal. 126, 101–108.

    Article  Google Scholar 

  24. Polz, J., Zeilinger, H., Müller, B., and Knözinger, H., (1989) Hydrogen uptake by MoS2 and sulfided alumina-supported Mo catalysts, J. Catal. 120, 22–28.

    Article  CAS  Google Scholar 

  25. Tops0e, N.-Y. and Tops0e, H. (1993) FTIR studies of Mo/Al2O3-based catalysts. II. Evidence for the presence of SH groups and their role in acidity and activity, J. Catal. 139, 641–651.

    Article  Google Scholar 

  26. Micinkiewcz, J., Zmierczak, W., and Massoth, F. E. (1987) Studies of molybdena-alumina catalysts. XIII. NO adsorption and SH content of sulfided catalysts, Bull. Soc. Chim. Belg. 96, 915–923.

    Article  Google Scholar 

  27. Stuchly, V. and Beranek, L. (1987) Activation of a hydrorefining cobalt-molybdenum catalyst. II. Development of polyfunctional activity of the catalyst during activation, Appl. Catal. 139, 35–45.

    Google Scholar 

  28. Duchet, J. C., van Oers, E. M., de Beer, V. H. J., and Prins, R. (1983) Carbon-supported sulfide catalysts, J. Catal. 80, 386–402.

    Google Scholar 

  29. Schrader, G. L. and Cheng, C. P. (1983) In situ laser Raman spectroscopy of the sulfiding of Mo/y-Al2O3 catalysts, J. Catal. 80, 369–385.

    CAS  Google Scholar 

  30. Wright, C. J., Sampson, C., Fraser, D., Moyes, R. B., Wells, P. B., and Riekel, C. (1980) Hydrogen sorption by molybdenum sulphide catalysts, J. Chem. Soc. Faraday Trans. 1 76, 1585–1598.

    Google Scholar 

  31. Yang, S. H. and Satterfield, C. N. (1983) Some effects of sulfiding of a NiMo/Al2O3 catalyst on its activity for hydrodenitrogenation of quinoline, J. Catal. 81, 168–178.

    Article  CAS  Google Scholar 

  32. Olalde, A. and Pérot, G. (1985) Selectivity of hydrodenitrogenation catalysts, Appl. Catal. 13, 373–384.

    Article  CAS  Google Scholar 

  33. Tops0e, H., Clausen, B. S., and Massoth, F. E. (1996) Hydrotreating catalysis. Science and technology, in J. R. Anderson and M. Boudait (eds.), Catalysis: Science and Technology, Vol. 11, Springer-Verlag, Berlin/New York.

    Google Scholar 

  34. Massoth, F. E. (1977) Studies of molybdena-alumina catalysts. VI. Kinetics of thiophene hydrogenolysis, J. Catal. 47, 316–327.

    Article  CAS  Google Scholar 

  35. Van Parijs, I. A. and Froment, G. F. (1986) Kinetics of hydrodesulfurization on a CoMo/gamma-Al2O3 catalyst. 1. Kinetics of the hydrogenolysis of thiophene, Ind. Eng. Chem. Prod. Res. Dev. 25, 431–436.

    Article  Google Scholar 

  36. Oliwes, S. W., Smith, T. D., Pilbrow, J. R., Pratt, K. C., and Christov, V. (1988) An electron spin resonance study of the catalyzed hydrodesulphurization of thiophene using sulphided molybdenum oxide on a zirconia support, J. Catal. 111, 88–93.

    Article  Google Scholar 

  37. Moravek, V. and Kraus, M. (1985) Non-stationary experiments on thiophene and tetrahydrothiophene hydrodesulfurization, Coll. Czech. Chem. Commun. 50, 2159–2169.

    Article  CAS  Google Scholar 

  38. Bulgakov, N. N. and Startsev, A. N. (1991) On the concerted mechanism of thiophene hydrogenolysis by bimetallic sulfide catalysts in terms of the interacting bond method, Mendeleev Commun. 1, 97–98.

    Article  Google Scholar 

  39. Startsev, A. N. (1995) The mechanism of HDS catalysis, Catal. Rev.-Sci. Eng. 37, 353–423.

    Article  CAS  Google Scholar 

  40. Ostrovskii, N. M., Gulyaev, K. S., Startsev, A. N., and Reutova, O. A. (1996) Dynamics of active site transformations in HDA-HDS catalysis, Can. J. Chem. Eng. 74, 935–940.

    Article  CAS  Google Scholar 

  41. Gachet, C. G., Dhainaut, E., de Mourgues, L., Candy, J. P., and Fouilloux, P. (1981) Mechanistic study of catalytic hydrodesulfurization of dibenzothiophene by means of the 35S radioisotope, Bull. Soc. Chim. Belg. 90, 1279–1284.

    Google Scholar 

  42. Isagulyants, G. V., Greish, A. A., Kogan, V. M., Vyunova, G. M., and Antoshin, G. V. (1987) Study of the mechanism of hydrogenolysis of thiophene on alumina-cobalt-molybdenum catalyst and molybdenum disulphide using 35S, Kinetics and Catalysis (Engl. tr.) 28, 550–554.

    Google Scholar 

  43. Isagulyants, G. V., Greish, A. A., and Kogan, V. M. (1988) Radioisotopic investigation on the mechanism of thiophene hydrodesulphurization on Co-Mo/Al203 catalyst, in M. J. Philips and M. Ternan (eds.), Proc. 9th Int. Congress on Catalysis (Calgary, 1988), Vol. 1, The Chemical Institute of Canada, Ottawa, Ontario, pp. 35–41.

    Google Scholar 

  44. Kabe, T., Qian, W., Ogawa, S., and Ishhara, A. (1993) Mechanism of hydrodesulfurization of dibenzothiophene on Co-Mo/Al203 and Co/Al203 catalyst by the use of radioisotope 35S tracer, J. Catal. 143, 239–248.

    Article  CAS  Google Scholar 

  45. Qian, W., Ishihara, A., Ogawa, S., and Kabe, T. (1994) Study of hydrodesulfurization by the use of 35S-labeled dibenzothiophene. 1. Hydrodesulfurization mechanism on sulfided Mo/Al203, J. Phys. Chem. 98, 907–911.

    Article  CAS  Google Scholar 

  46. Kabe, T., Quian, W., and Ishihara, A. (1994) Study of hydrodesulfurization by the use of 35S-labeled dibenzothiophene. 2. Behavior of sulfur in HDS, HDO, and HDN on sulfided Mo/Al203 catalyst, J. Phys. Chem. 98, 912–916.

    Article  CAS  Google Scholar 

  47. Kabe, T., Qian, W., Wang, W., and Ishhara, A. (1996) Sulfur exchange on Co-Mo/Al203 hydrodesulfurization catalyst using 35S radioisotope tracer, Catal. Today 29, 197–202.

    Article  CAS  Google Scholar 

  48. Kogan, V. M., Greish, A. A., and Isagulyants, G. V. (1990) Investigation of the promotion effect on the sulfide sulfur mobility and on the catalytic activity of hydrotreating CoMo/Al203 catalyst using 35S, CataL Leu. 6, 157–162.

    Article  CAS  Google Scholar 

  49. Scarpiello, D. A., Montagna, A. A., and Freel, J. (1985) Activity and structure of sulfided molybdena-alumina catalysts, J. Catal. 96, 276–284.

    Article  CAS  Google Scholar 

  50. Kogan, V.M., Nguen Thi Dung, and Yakerson, V.I. (1995) Comparative study of sulfide Ni-Mo catalysts, supported on ‘y-Al203 and activated carbon by using 35 S, Bull. Soc. Chim. Belg. 104, 303–309.

    Article  CAS  Google Scholar 

  51. Topsde, H. and Clausen, B. S. (1984) Importance of Co-Mo-S type structures in hydrodesulfurization, Catal. Rev.-Sci. Eng. 26, 395–420.

    Article  Google Scholar 

  52. Topsoe, H. and Clausen, B. S. (1986) Active sites and support effects in hydrodesulfurization catalysts, Appl. CataL 25, 273–293.

    Article  CAS  Google Scholar 

  53. Isagulyants, G. V., Greish A. A., and Kogan, V. M. (1987) Sulphidation of an aluminocobaltmolybdenum catalyst using 35S, Kinetics and Catalysis (Engl. tr.) 28, 220–222.

    Google Scholar 

  54. Kogan, V. M. and Parfenova, N. M. (1997) Petroleum residua hydrotreating on Co and/or Ni containing catalysts, in G. F. Froment, B. Delmon and P. Grange (eds.), Hydrotreating and hydrocracking of oil fractions, Elsevier Science B.V., Amsterdam, pp. 449–462.

    Chapter  Google Scholar 

  55. Topst e, H., Clausen, B. S., Topsoe, N.-Y., Norskov, J. K., Ovesen, C. V., and Jacobsen, C. J. H. (1995) The bond energy model for hydrotreating reactions: Theoretical and experimental aspects, Bull. Soc. Chim. Belg. 104, 283–291.

    Google Scholar 

  56. Startsev, A. N., Artamonov, E. V., and Yermakov Y. I. (1988) Sulfide catalysts on silica as a support. VIII. Isotope exchange of hydrogen sulphide with sulphide catalysts, Appl. Catal. 45, 183–190.

    Article  CAS  Google Scholar 

  57. Dobrovolszky, M., Pahl, Z., and Tétényi, P. (1996) Uptake of hydrogen sulfide by molybdena-alumina catalysts containing group 8–10 metals, Appl. Catal. 142, 159–174.

    Article  CAS  Google Scholar 

  58. Massoth, F. E., and Zeuthen, P. (1994) Sulfur exchange studies on a Mo/Al203 catalyst, J. CataL 145, 216–222.

    Article  CAS  Google Scholar 

  59. Smith, G. V., Hincley, C. C., and Behbahany, F. (1973) Catalytic exchange and hydrogenolysis of thiophene and related heterocycles, J. Catal. 30, 218–225.

    Article  CAS  Google Scholar 

  60. Mikovsky, R. J., Silvestri, A. J., and Heinemann, H. (1974) On the mechanism of thiophene desulfurization, J. Catal. 34, 324–326.

    Article  CAS  Google Scholar 

  61. Roberts, J. T., and Friend, C. M. (1986) Model hydrodesulfurization reactions: Saturated C4S molecules on Mo (110), J. Amer. Chem. Soc. 108, 7204–7210.

    Google Scholar 

  62. McCarty, K. F., and Schrader, G. L. (1987) Deuterodesulfurization of thiophene: an investigation of the reaction mechanism, J. Catal. 103, 261–269.

    Article  CAS  Google Scholar 

  63. Isagulyants, G. V., Greish A. A., and Kogan, V. M. (1987) Study of the mechanism of hydrogenolysis of thiophene on alumina-cobalt-molybdenum catalyst and molybdenum disulphide using tritium, Kinetics and Catalysis (Engl. tr.) 28, 555–560.

    Google Scholar 

  64. Thomas, C., Vivier, L., Lemberton, J. L., Kasztelan, S., and Pérot, G. (1997) Deuterium tracer studies on hydrotreating catalysts–isotopic exchange between hydrogen and hydrogen sulfide on sulfided NiMo/Al2O3, J. Catal. 167, 1–11.

    Article  CAS  Google Scholar 

  65. Siegel, S. (1973) Alkene hydrogenation and related reactions. A comparison of heterogeneous with homogeneous catalysis, J. Catal. 30, 139–145.

    Article  CAS  Google Scholar 

  66. Kogan, V. M., Greish A. A., and Isagulyants, G. V. (1995) Investigation into the role of molecular hydrogen in thiophene HDS on Co-Mo/Al2O3 sulfide catalyst with tritium, in Proc. 2nd European Congress on Catalysis, Maastricht, 3–8 Sept., Book of Abstracts, p. 23.

    Google Scholar 

  67. Rodriguez, J. A., Li, S. Y., Hrbek, J., Huang H. H., and Xu, G.-Q. (1996) Chemical properties of Zn/S/Mo(110) and Co/S/Mo(110) surfaces: reaction with hydrogen and formation of hydrogen sulfide, J. Phys. Chem. 100, 14476–14484.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kogan, V.M. (1998). Reaction Dynamics during C-S Bond Breaking in Sulphur-Containing Molecules: Isotope Studies. In: Weber, T., Prins, R., van Santen, R.A. (eds) Transition Metal Sulphides. NATO ASI Series, vol 60. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3577-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3577-3_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5100-4

  • Online ISBN: 978-94-017-3577-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics