Advertisement

Quantitative Procedures in 3D PET

  • Dale L. Bailey
Chapter
Part of the Developments in Nuclear Medicine book series (DNUM, volume 32)

Abstract

Positron tomography has always had a strong quantitative emphasis. The reconstructed volumes which result from 2D acquisition provide radioactivity concentrations accurate to within a few percent under well-controlled, calibrated conditions. This is mostly due to the low acceptance of scattered coincidences and the accuracy of the corrections for random coincidences, dead time, and attenuation. In 3D PET though, many of these factors are altered by the acquisition geometry and the procedures needed for 3D reconstruction. This chapter discusses the approaches taken at present to applying the various corrections needed for quantitative 3D PET.

Keywords

Line Source Energy Window Scatter Correction Scattered Photon Linear Attenuation Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Axelsson B, Msaki P, and Israelsson A (1984): “Subtraction of Compton-scattered photons in single-photon emission computerized tomography” J Nucl Med 25: 490–494PubMedGoogle Scholar
  2. Bailey DL, Hutton BF, Meikle SR, Fulton RR, and Jackson CB (1989a): “An attenuation dependent scatter correction technique for SPECT” Phys Med Biol 34: 152 (Abstract)Google Scholar
  3. Bailey DL, Hutton BF, Meikle SR, Fulton RR, and Jackson CB (1989b): “Iterative scatter correction incorporating attenuation data” Eur J Nucl Med 15: 452 (Abstract)Google Scholar
  4. Bailey DL and Jones T (1995): “Normalisation for 3D PET with a Translating Line Pseudo-Plane Source” J Nucl Med 36 (5): 92P (Abstract)Google Scholar
  5. Bailey DL and Jones T (1997): “A method for calibrating three-dimensional positron emission tomography without scatter correction” Eur J Nucl Med 24 (6): 660–664PubMedGoogle Scholar
  6. Bailey DL, Jones T, and Spinks TJ (1991): “A Method for Measuring the Absolute Sensitivity of Positron Emission Tomographic Scanners” Eur J Nucl Med 18: 374–379PubMedCrossRefGoogle Scholar
  7. Bailey DL and Meikle SR (1994): “A convolution-subtraction scatter correction method for 3D PET” Phys Med Biol 39 (3): 411–424PubMedCrossRefGoogle Scholar
  8. Bailey DL, Townsend DW, Kinahan PE, Grootoonk S, and Jones T (1996): “An Investigation of Factors Affecting Detector and Geometric Correction in Normalisation of 3D PET Data” IEEE Trans Nucl Sci NS-43: 1300–1307Google Scholar
  9. Barney JS, Harrop R, and Dykstra CJ (1993): “Source Distribution Dependent Scatter Correction for PVI” IEEE Trans Nucl Sci NS-40(4): 1001–1007Google Scholar
  10. Barney JS, Rogers J, Harrop R, and Hoverath H (1991): “Object shape dependent simulations for PET” IEEE Trans Nucl Sci NS-38(2): 719–725Google Scholar
  11. Beck RN, Schuh MW, Cohen TD, and Lembares N (1969): “Effects of Scattered Radiation on Scintillation Detector Response”. In: Medical Radioisotope Scintigraphy. Vienna: IAEA, Vol 1: pp. 595–615Google Scholar
  12. Bendriem B, Trébossen R, Froulin V, and Syrota A (1993): “A PET Scatter Correction Using Simultaneous Acquisitions with Low and High Lower Energy Thresholds”. In: Klaisner L, ed. Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, San Francisco, USA. Vol 3: 1779–1783Google Scholar
  13. Bentourkia M, Msaki P, Cadorette J, and Lecomte R (1993): “Assessment of Scatter Components in Multispectral PET Imaging”. In: Klaisner L, ed. Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, San Francisco, USA. Vol 3: 1505–1509Google Scholar
  14. Bentourkia M, Msaki P, Cadorette J, and Lecomte R (1995): “Energy Dependence of Scatter Components in Multispectral PET Imaging” IEEE Trans Nucl Sci NS-14(1): 138145Google Scholar
  15. Bergstrom M, Eriksson L, Bohm C, Blomqvist G, and Litton J-E (1983): “Correction for scattered radiation in a ring detector positron camera by integral transformation of the projections” J Comput Assist Tomogr 7 (1): 42–50PubMedCrossRefGoogle Scholar
  16. Bergstrom M, Eriksson L, Greitz T, Litton J, and Widen L (1982): “A Procedure for Calibrating and Correcting Data to Achieve Accurate Quantitative Values in Positron Emission Tomography” IEEE Trans Nucl Sci NS-29(1): 555–557Google Scholar
  17. Casey ME, Gadagkar H, and Newport D (1995): “A Component Based Method for Normalization in Volume PET”. In: Grangeat P and Amans J-L, eds. Proceedings of the 3rd International Conference on Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Aix-les-Bains. Vol 67–71Google Scholar
  18. Casey ME and Hoffman EJ (1986): “Quantitation in positron emission tomography: 7. A technique to reduce noise in accidental coincidence measurement and coincidence efficiency calibration” J Comput Assist Tomogr 10 (5): 845–850PubMedCrossRefGoogle Scholar
  19. Cherry SR, Dahlbom M, and Hoffman EJ (1991): “3D PET using a Conventional Multislice Tomograph without Septa” J Comput Assist Tomogr 15: 655–668PubMedCrossRefGoogle Scholar
  20. Cherry SR, Dahlbom M, and Hoffman EJ (1992): “Evaluation of a 3D reconstruction algorithm for multi-slice PET scanners” Phys Med Biol 37: 779–790PubMedCrossRefGoogle Scholar
  21. Cherry SR and Huang S-C (1995): “Effects of Scatter on Model Parameter Estimates in 3D PET Studies of the Human Brain” IEEE Trans Nucl Sci NS-42(4): 1174–1179Google Scholar
  22. Cherry SR, Meikle SR, and Hoffman EJ (1993): “Correction and Characterization of Scattered Events in Three-Dimensional PET Using Scanners with Retractable Septa” J Nucl Med 34: 671–678PubMedGoogle Scholar
  23. Chesler DA and Stearns CW (1990): “Calibration of detector sensitivity in positron cameras” IEEE Trans Nucl Sci 37 (2): 768–772CrossRefGoogle Scholar
  24. Compton AH (1923): “A quantum theory of the scattering of X-rays by light elements” Phys Rev 21: 483–502CrossRefGoogle Scholar
  25. Dahlbom M and Hoffman EJ (1987): “Problems in signal-to-noise ratio for attenuation correction in high resolution PET” IEEE Trans Nucl Sci 34 (1): 288–293CrossRefGoogle Scholar
  26. Defrise M, Townsend DW, Bailey DL, Geissbühler A, Michel C, and Jones T (1991): “A normalization technique for 3D PET data” Phys Med Biol 36 (7): 939–952PubMedCrossRefGoogle Scholar
  27. deKemp RA and Nahmias C (1994): “Attenuation correction in PET using single photon transmission measurement” Med Phys 21 (6): 771–778PubMedCrossRefGoogle Scholar
  28. Derenzo SE, Zaklad H, and Budinger TF (1975): “Analytical study of a high-resolution positron ring detector system for transaxial reconstruction tomography” J Nucl Med 16 (12): 1166–1173PubMedGoogle Scholar
  29. DeVito R, Hamill J, Trefert J, and Stoub E (1989): “Energy-weighted acquisition of scintigraphic images by analysis of energy spectra” J Nucl Med 30: 2029–2035Google Scholar
  30. Digby WM and Hoffman EJ (1989): “An investigation of scatter in attenuation correction for PET” IEEE Trans Nucl Sci NS-36(1): 1038–1042Google Scholar
  31. Egbert SD and May RS (1980): “An integral-transport method for Compton-scatter correction in emission computed tomography” IEEE Trans Nucl Sci NS-27(1): 543–547Google Scholar
  32. Eichung JO, Higgins CS, and Ter-Pogossian MM (1977): “Determination of Radionuclide Concentrations with Positron CT Scanning ( PETT ): Concise Communication” J Nucl Med 18: 845–847Google Scholar
  33. Floyd CE, Jaszczak RT, Greer KL, and Coleman RE (1985): “Deconvolution of Compton scatter in SPECT” J Nucl Med 26: 403–408PubMedGoogle Scholar
  34. Gagnon D, Todd-Pokropek A, Arsenault A, and Dupras G (1989): “Introduction to holospectral imaging in nuclear medicine for scatter subtraction” IEEE Trans Med Imag MI-8: 245–250Google Scholar
  35. Goggin AS and 011inger JM (1994): “A model for multiple scatters in fully 3D PET”. In: Trendler RC, ed. Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, Norfolk, VA, USA. Vol 4: 1609–1613Google Scholar
  36. Grootoonk S, Spinks TJ, Jones T, Michel C, and Bol A (1991): “Correction for scatter using a dual energy window technique with a tomograph operated without septa”. In: Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, Santa Fe. Vol 3: 1569–1573Google Scholar
  37. Harrison RL, Haynor DR, and Lewellen TK (1991): “Dual energy window scatter corrections for PET”. In: Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, Santa Fe. Vol 3: 1700–1704Google Scholar
  38. Haynor DR, Kaplan MS, Miyaoka RS, and Lewellen TK (1995): “Multi-window scatter correction techniques in single-photon imaging” Med Phys 22 (12): 2015–2024PubMedCrossRefGoogle Scholar
  39. Hiltz LG and McKee BTA (1994): “Scatter correction for three-dimensional PET based on an analytical model dependent on source and attenuating object” Phys Med Biol 39: 2059–2071PubMedCrossRefGoogle Scholar
  40. Hoffman EJ, Guerrero TM, Germano G, Digby WM, and Dahlbom M (1989): “PET system calibration and corrections for quantitative and spatially accurate imagees” IEEE Trans Nucl Sci 36 (1): 1108–1112CrossRefGoogle Scholar
  41. Huang S-C, Carson R, Phelps ME, Hoffman EJ, Schelbert H, and Kuhl D (1981): “A boundary method for attenuation correction in positron emission tomography” IEEE Trans Nucl Sci 22: 627–637Google Scholar
  42. Huang SC, Hoffman EJ, Phelps ME, and Kuhl DE (1979): “Quantitation in positron emission tomography: 2. Effect of inaccurate attenuation correction” J Comput Assist Tomogr 3 (6): 804–814PubMedGoogle Scholar
  43. Jaszczak RJ, Greer KL, Floyd CE, Harris CG, and Coleman RE (1984): “Improved SPECT quantitation using compensation for scattered photons” J Nucl Med 25: 893–900PubMedGoogle Scholar
  44. Jones T, Bailey DL, Bloomfield PM, et al (1996): “Performance Characteristics And Novel Design Aspects Of The Most Sensitive PET Camera Built For High Temporal And Spatial Resolution” J Nucl Med 37(5): 85P (Abstract)Google Scholar
  45. Jones WF, Vaigneur K, Young J, Moyers C, and Nahmias C (1995): “The Architectural Impact of Single Photon Transmission Measurements on Full Ring 3D Positron Tomography”. In: Moonier PA, ed. Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, San Francisco. Vol 2: 1026–1030Google Scholar
  46. Karp JS, Daube-Witherspoon ME, Hoffman EJ, et al (1991): “Performance Standards in Positron Emission Tomography” J Nucl Med 32 (12): 2342–2350PubMedGoogle Scholar
  47. Karp JS, Muehllehner G, Qu H, and Yan X-H (1995): “Singles transmission in volume-imaging PET with a 137Cs source” Phys Med Biol 40: 929–944PubMedCrossRefGoogle Scholar
  48. Karp JS, Muehllener G, Mankoff DA, Ordonez CE, 011inger JM, Daube-Witherspoon ME, Haigh AT, and Beerbohm DJ (1990): “Continuous-slice PENN-PET: a positron tomograph with volume imaging capability” J Nucl Med 31: 617–627PubMedGoogle Scholar
  49. Kinahan PE and Rogers JG (1989): “Analytic 3-D image reconstruction using all detected events” IEEE Trans Nucl Sci NS-36: 964–968Google Scholar
  50. Kinahan PE, Townsend DW, Bailey DL, Sashin D, Jadali F, and Mintun MA (1995): “Efficiency Normalization Techniques for 3D PET Data”. In: Moonier PA, ed. Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, San Francisco. Vol 2: 1021–1025Google Scholar
  51. King M, Schwinger R, Doherty P, and Penney B (1984): “Two-dimensional filtering of SPECT images using the Metz and Weiner filters” J Nucl Med 25: 1234–1240PubMedGoogle Scholar
  52. King MA, Hademenos GJ, and Glick SJ (1992): “A dual-photopeak window method for scatter correction” J Nucl Med 33: 605–612PubMedGoogle Scholar
  53. Klein O and Nishina Y (1928): “über die streuung von strahlung durch frei elektronen nach der neuen relativistischen quantendynamik von Dirac” Z Physik 52: 853–868CrossRefGoogle Scholar
  54. Koral KF, Clinthome NH, and Rogers WL (1986): “Improving emission-computedtomography quantification by compton-scatter rejection through offset windows” Nucl Instr Meth Phys Res A242: 610–614CrossRefGoogle Scholar
  55. Larsson SA (1980): “Gamma camera emission tomography. Development and properties of a multi-sectional emission computed tomography system” Acta Radiol Suppl 363: 30–32Google Scholar
  56. Lercher MJ and Wienhard K (1994): “Scatter Correction in 3-D PET” IEEE Trans Med Imag MI-13(4): 649–657Google Scholar
  57. Levin CS, Dahlbom M, and Hoffman EJ (1995): “A Monte Carlo Correction for the Effect of Compton Scattering in 3-D PET Brain Imaging” IEEE Trans Nucl Sci NS-42(4): 1181–1185Google Scholar
  58. Links JM, Leal W. Mueller-Gartner HW, and Wagner Jr HN (1992): “Improved positron emission tomography quantification by Foruier-based restoration filtering” Eur J Nucl Med 19: 925–932PubMedGoogle Scholar
  59. Ljungberg M and Strand S-E (1990): “Scatter and attenuation correction in SPECT using density maps and Monte Carlo simulated scatter functions” J Nucl Med 31: 1560–1567 attenuation correction for a 3D PET system“ Phys Med Biol 36 (5): 603–619Google Scholar
  60. McKee BTA, Gurvey AT, Harvey PJ, and Howse DC (1992): “A Deconvolution Scatter Correction for a 3-D PET System” IEEE Trans Med Imag MI-11(4): 560–569Google Scholar
  61. McKee BTA and Hiltz LG (1994): “Attenuation correction for three-dimensional PET using uncollimated flood-source transmission measurements” Phys Med Biol 39: 20432058Google Scholar
  62. Meikle SR, Dahlbom M, and Cherry SR (1993): “Attenuation correction using count-limited transmission data in positron emission tomography” J Nucl Med 34 (1): 143–150PubMedGoogle Scholar
  63. Meikle SR, Hutton BF, and Bailey DL (1994): “A transmission dependent method for scatter correction in SPECT” J Nucl Med 35 (2): 360–367PubMedGoogle Scholar
  64. Meikle SR, Hutton BF, Bailey DL, Fulton RR, and Schindhelm K (1991): “SPECT scatter correction in non-homogeneous media”. In: Colchester ACF and Hawkes DJ, Information Processing in Medical Imaging: XIlth IPMI International Conference. Berlin: Springer-Verlag, pp. 34–44Google Scholar
  65. Msaki P, Axelsson B, Dahl CM, and Larsson SA (1987): “Generalized scatter correction method in SPECT using point scatter distribution functions” J Nucl Med 28: 1861–1869PubMedGoogle Scholar
  66. Mumcuoglu EU, Leahy R, Cherry SR, and Zhou Z (1994): “Fast Gradient Based Methods for Bayesian Reconstruction of Transmission and Emission PET Images” IEEE Trans Med Imag MI-13: 687–701Google Scholar
  67. Naude H, van Aswegen A, Herbst CP, Lotter MG, and Pretorius PH (1996): “A Monte Carlo evaluation of the channel ratio scatter correction method” Phys Med Biol 41: 1059–1066PubMedCrossRefGoogle Scholar
  68. NEMA (1986): Performance measurements of scintillation cameras. Standards Publication NU-1–1986, National Electrical Manufacturers Association, Washington, DCGoogle Scholar
  69. inger J (1991): “Estimation of the distribution of scattered coincidences in PET using transmission scans” J Nucl Med 32: 996Google Scholar
  70. inger JM (1995): “Detector Efficiency and Compton Scatter in Fully 3D PET” IEEE Trans Nucl Sci NS-42(4): 1168–1173Google Scholar
  71. inger JM (1996): “Model-based scatter correction for fully 3D PET” Phys Med Biol 41 (1): 153–176PubMedCrossRefGoogle Scholar
  72. inger JM and Johns GC (1993): “Model-Based Scatter Correction for Fully 3D PET”. In: Klaisner L, ed. Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, San Francisco, USA. Vol 3: 1264–1268Google Scholar
  73. Penney BC, Rajeevan N, Bushe HS, Hademenos G, and King MA (1991): “A scatter reduction method for In-111 scintigrams using five energy windows”. In: Baldwin GT, ed. Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, Santa Fe. Vol 3: 1866–1873Google Scholar
  74. Prati P, Lanza P, Corveisiero P, Guzzardi R, and Sorace 0 (1993): “Verification of the integral transformation of the projection technique for scatter correction in positron tomographs” Eur J Nucl Med 20: 255–259PubMedGoogle Scholar
  75. Pretorious P, van Rensburg A, van Aswegen A, Lötter M, Serfontein D, and Herbst C (1993): “The Channel Ratio method of Scatter Correction for Radionuclide Image Quantitation” J Nucl Med 34: 330–335Google Scholar
  76. Rakshi J, Bailey DL, Morrish PK, and Brooks DJ (1996): “Implementation of 3D Acquisition, Reconstruction and Analysis of Dynamic Fluorodopa Studies”. In: Myers R, Cunningham VJ, Bailey DL and Jones T, Quantification of Brain Function Using PET. San Diego: Academic Press, pp. 82–87Google Scholar
  77. Shao L, Freifelder R, and Karp JS (1994): “Triple Energy Window Scatter Correction Technique in PET” IEEE Trans Med Imag 13 (4): 641–648CrossRefGoogle Scholar
  78. Shao L and Karp JS (1991): “Cross-Plane Scattering Correction–Point Source Deconvolution in PET” IEEE Trans Med Imag MI-10(3): 234–239Google Scholar
  79. Shao L and Karp JS (1995): “Modified Convolution-Subtraction Scattering Correction Technique for 3D PET”. In: Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, San Francisco. Vol (to appear)Google Scholar
  80. Shao L, Karp IS, and Freifelder R (1993): “Composite dual window scattering correction technique in PET”. In: Klaisner L, ed. Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, San Francisco, USA. Vol 3: 1391–1395Google Scholar
  81. Spinks TJ, Jones T, Bailey DL, Townsend DW, Grootoonk S, Bloomfield PM, Gilardi MC, Sipe B, and Reed J (1992): “Physical performance of a positron tomograph for brain imaging with retractable septa” Phys Med Biol 37 (8): 1637–1655PubMedCrossRefGoogle Scholar
  82. Stazyk MW, Sossi V, Buckley KR, and Ruth TJ (1994): “Normalization Measurement in Septa-less PET Scanners” J Nucl Med 35 (5): 41P (Abstract)Google Scholar
  83. Stearns CW (1995): “Scatter Correction Methods for 3D PET Using 2D Fitted Gaussian Functions” J Nucl Med 36(5): 105P (Abstract)Google Scholar
  84. Thompson CJ (1993): “The Problem of Scatter Correction in Positron Volume Imaging” IEEE Trans Med Imag MI-10: 234–239Google Scholar
  85. Townsend DW, Bishop H, Mintun MA, Byars LG, Geissbühler A, and Nutt R (1994a): “Physical and Clinical Performance of a Rotating Positron Tomograph” J Nucl Med 35 (5): 41P (Abstract)Google Scholar
  86. Townsend DW, Choi Y, Sashin D, and Mintun M (1994b): “An Investigation of Practical Scatter Correction Techniques for 3D PET” J Nucl Med 35 (5): 50P (Abstract)Google Scholar
  87. Townsend DW, Geissbühler A, Defrise M, Hoffman EJ, Spinks TJ, Bailey DL, Gilardi M-C, and Jones T (1991): “Fully Three-Dimensional Reconstruction for a PET Camera with Retractable Septa” IEEE Trans Med Imag 10: 505–512CrossRefGoogle Scholar
  88. Townsend DW, Price JC, Mintun MA, Kinahan PE, Jadali F, Sashin D, Simpson N, and Mathis CA (1996): “Scatter Correction for Brain Receptor Quantitation in 3D PET”. In: Myers R, Cunningham VJ, Bailey DL and Jones T, Quantification of Brain Function Using PET. San Diego: Academic Press, pp. 76–81Google Scholar
  89. Townsend DW, Spinks TJ, Jones T, Geissbühler A, Defrise M, Gilardi M-C, and Heather JD (1989): “Three dimensional reconstruction of PET data from a multi-ring camera” IEEE Trans Nucl Sci 36 (1): 1056–1065CrossRefGoogle Scholar
  90. Townsend DW, Wensveen M, Byars LG, Geissbühler A, Tochon-Danguy HJ, Christin A, Defrise M, Bailey DL, Grootoonk S, Donath A, and Nutt R (1993): “A Rotating PET Scanner Using BGO Block Detectors: Design, Performance and Applications” J Nucl Med 34: 1367–1376Google Scholar
  91. Trébossen R and Bendriem B (1995a): “Quantitation in 3D PET; the effect of scatter correction on recovery coefficient”. In: Grangeat P, ed. Proceedings of the 3rd International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Aix-les-Bains, France. Vol 127–131Google Scholar
  92. Trébossen R, Bendriem B, Fontaine A, Frouin V, and Remy P (1996): “Quantitation of the [18F]Fluorodopa Uptake in the Human Striatum in 3D PET with the ETM Scatter Correction”. In: Myers R, Cunningham VJ, Bailey DL and Jones T, Quantification of Brain Function Using PET. San Diego: Academic Press, pp. 88–92Google Scholar
  93. Trébossen R, Bendriem B, Fontaine A, Rougetet R, Frouin V, and Remy P (1995b): “Quantitation of Clinical 3D PET Studies with the ETM Scatter Correction”. In: Moonier PA, ed. Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, San Francisco. Vol 3: 1447–1452Google Scholar
  94. Watson CC, Newport D, and Casey ME (1996): “A Single Scatter Simulation Technique for Scatter Correction in 3D PET”. In: Grangeat P and Amans J-L, Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine. Dordrecht: Kluwer Academic, (Viergever MA, ed. Computational Imaging and Vision; Vol 4: pp. 255–268CrossRefGoogle Scholar
  95. Wu C, Ordenez CE, and Chen C-T (1994): “Characterization and Correction for Scatter in 3D PET Using Rebinned Plane Integrals” IEEE Trans Nucl Sci NS-41(6): 2758–2764Google Scholar
  96. Wu C, Ordonez CE, and Chen C-T (1993): “Scatter Correction for 3-D PET by Convolution of Plane-Integral Projections”. In: Klaisner L, ed. Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, San Francisco, USA. Vol 3: 1515–1519Google Scholar
  97. Xu EZ, Mullani NA, Gould KL, and Anderson WL (1991): “A segmented attenuation correction for PET” J Nucl Med 32: 161–165PubMedGoogle Scholar
  98. Xu M, Luk WK, Cutler PD, and Digby WM (1994): “Local threshold for segmented attenuation correction of PET imaging of the thorax” IEEE Trans Nucl Sci NS-41: 1532–1537Google Scholar
  99. Yanch JC, Flower MA, and Webb S (1990): “Improved quantification of radionuclide uptake using deconvolution and windowed subtraction techniques for scatter compensation in single photon emission computed tomography” Med Phys 17 (6): 1011–1022PubMedCrossRefGoogle Scholar
  100. Yu SK and Nahmias C ( 1995 “Single-photon transmission measurements in positron emission tomography using 1 7Cs” Phys Med Biol 40: 1255–1266PubMedCrossRefGoogle Scholar
  101. Yu SK and Nahmias C (1996): “Segmented attenuation correction using artificial neural networks in positron tomography” Phys Med Biol 41: 2189–2206PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Dale L. Bailey
    • 1
  1. 1.MRC Cyclotron UnitHammersmith HospitalLondonUK

Personalised recommendations