Skip to main content

The use of isolated hepatocytes to study the mechanisms of action of environmental contaminants

  • Chapter
The Hepatocyte Review

Abstract

Understanding the impact of environmental toxic substances encompasses many challenges. Application of the basic concepts of toxicology, as developed in the medical sciences, has to be adapted and, in some instances, reinvented. In contrast to what is seen in laboratory or clinical settings when drugs are used, exposure to xenobiotics in the environment is most often poorly characterized. In addition, under environmental conditions, the poison is usually low in dose and repeatedly absorbed over prolonged periods of time. Because toxic substances almost invariably occur in the environment in the form of complex mixtures, simultaneous exposure to multiple agents is frequent and the biological responses seen are difficult to interpret.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kedderis GL. Biochemical basis of hepatocellular injury. Toxicol Pathol 1996; 24: 77–83.

    Article  PubMed  CAS  Google Scholar 

  2. WHO Environmental Health Criteria 140: Polychlorinated Biphenyls and Terphenyls. 2nd ed, Geneva: World Health Organization, 1993: 682.

    Google Scholar 

  3. Vickers AEM, Sipes IG and Brendel K. Metabolism-related spectral characterization and subcellular distribution of polychlorinated biphenyl congeners in isolated rat hepatocytes. Biochem Pharmacol 1986; 35: 297–306.

    Article  PubMed  CAS  Google Scholar 

  4. Sawahat T, Olson JR and Neal RA. Identification of metabolites of 2,3,7,8tetrachlorodibenzo-p-dioxin (TCDD) formed on incubation with isolated rat hepatocytes. Biochem Biophys Res Com 1982; 105: 341–346.

    Article  Google Scholar 

  5. KuriHara N, Hori N and Ichinose R. Cytochrome P-450 content and aldrin epoxidation to dieldrin in isolated rat hepatocytes. Pestic Biochem Physiol 1984; 21: 63–73.

    Article  CAS  Google Scholar 

  6. Reader S, Saint-Louis R, Pelletier E and Denizeau F. Accumulation and biotransformation of tri-n-butyltin by isolated rainbow trout hepatocytes. Environ Toxicol Chem 1996; 15: 2049–2052.

    CAS  Google Scholar 

  7. Poland A and Knutson J. 2,3,7,8-tetrachlorodibenzo-p-dioxin and related halogenated aromatic hydrocarbons: examination of the mechanism of toxicity. Annu Rev Pharmacol Toxicol 1982; 22: 517–554.

    Google Scholar 

  8. Whitlock JP Jr. Genetic and molecular aspects of 2,3,7,8-tetrachlorodibenzo-p-dioxin action. Annu Rev Pharmacol Toxicol 1990; 30: 251–277.

    Article  PubMed  CAS  Google Scholar 

  9. Gasiewicz TA, Elferink CJ and Henry EC. Characterization of multiple forms of the Ah receptor: recognition of a dioxin-responsive enhancer involves heteromer formation. Biochemistry 1991; 30: 2909–2916.

    Article  PubMed  CAS  Google Scholar 

  10. Schrenk D, Stüven T, Gohl G, Viebahn R and Bock KW. Induction of CYPIA and glutathione S-transferase activities by 2,3,7,8-tetrachlorodibenzo-p-dioxin in human hepatocyte cultures. Carcinogenesis 1995; 16: 943–946.

    Article  PubMed  CAS  Google Scholar 

  11. Abdel-Razzak Z, Corcos L, Fautrel A, Campion J-P and Guillouzo A. Transforming growth factor (31 down-regulates basal and polycyclic aromatic hydrocarbon-induced cytochromes P-450 lAI and 1A2 in adult human hepatocytes in primary culture. Moles Pharmacol 1994; 46: 1100–1110.

    CAS  Google Scholar 

  12. Merrill J, Beck DJ, Kaminski DA and Li AP. Polybrominated biphenyl induction of cytochrome P450 mixed function oxidase activity in primary rat and human hepatocytes. Toxicology 1995; 99: 147–152.

    Article  PubMed  CAS  Google Scholar 

  13. Wölfle D, Becker E and Schmutte C. Growth stimulation of primary rat hepatocytes by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Cell Biol Toxicol 1993; 9: 15–31.

    Article  PubMed  Google Scholar 

  14. Kremers P, Roelandt L, Stouvenakers N, Goffinet G and Thome JP. Expression and induction of drug-metabolizing enzymes in cultured fetal rat hepatocytes. Cell Biol Toxicol 1994; 10: 117–125.

    Article  PubMed  CAS  Google Scholar 

  15. Roelandt L, Dubois M, Todaro A, Thome JP and Kremers P. Effect of inducers and PCBs on the cytochrome P450 enzymes in cultured quail hepatocytes. Ecotox Environ Safety 1995; 31: 158–163.

    Google Scholar 

  16. Safa B, Lee C and Riddick DS. Role of the aromatic hydrocarbon receptor in the suppression of cytochrome P-450 2C11 by polycyclic aromatic hydrocarbons. Toxicol Lett 1997; 90: 163–175.

    Article  PubMed  CAS  Google Scholar 

  17. Dubois M, De-Waziers I, Thomé JP and Kremers P. P450 induction by Aroclor 1254 and 3,3’,4,4’-tetrachlorobiphenyl in cultured hepatocytes from rat, quail and man: interspecies comparison. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 1996; 113: 51–59.

    Article  PubMed  CAS  Google Scholar 

  18. Madra S and Smith AG. Induction of cytochrome P450 activities by polychlorinated biphenyls in isolated mouse hepatocytes. Biochem Pharmacol 1992; 44: 455–464.

    Article  PubMed  CAS  Google Scholar 

  19. Chun YJ, Koh WS and Yang KH. Suppression of TCDD-induced cytochrome P450 IA1 activity by staurosporine in mouse primary hepatocyte cultures and hepatoma cells. Biochem Molec Biol Interact 1994; 32: 1023–1032.

    CAS  Google Scholar 

  20. Kennedy SW, Lorenzen A, Jones SP, Hahn ME and Stegeman JJ. Cytochrome P4501A induction in avian hepatocyte cultures: a promising approach for predicting the sensitivity of avian species to toxic effects of halogenated aromatic hydrocarbons. Toxicol Appl Pharmacol 1996; 141: 214–230.

    PubMed  CAS  Google Scholar 

  21. Bosveld ATC, Kennedy SW, Seinen W and van den Berg M. Ethoxyresorufin-Odeethylase (EROD) inducing potencies of planar chlorinated aromatic hydrocarbons in primary cultures of hepatocytes from different developmental stages of the chicken. Arch Toxicol 1997; 71: 746–750.

    Article  PubMed  CAS  Google Scholar 

  22. Topp RJ and van-Bladeren PJ. Oxidative biotransformation in primary cultures of chick embryo hepatocytes: induction of cytochrome P-450 and the metabolism of benzo[a]pyrene. Arch Toxicol 1986; 59: 150–155.

    Article  PubMed  CAS  Google Scholar 

  23. Roelandt L, Todaro A, Thomé JP and Kremers P. Effects of PCBs (Aroclor 1254) on cytochrome-P450 expression and monooxygenase activities in cultured foetal rat hepatocytes. Toxicology 1995; 98: 95–103.

    Article  PubMed  CAS  Google Scholar 

  24. Pesonen M and Andersson T. Characterization and induction of xenobiotic metabolizing enzyme activities in a primary culture of rainbow trout hepatocytes. Xenobiotica 1991; 21: 461–471.

    Article  PubMed  CAS  Google Scholar 

  25. Pesonen M, Goksoyr A and Andersson T. Expression of P4501A1 in a primary culture of rainbow trout hepatocytes exposed to ß-naphthoflavone or 2,3,7,8tetrachlorodibenzo-p-dioxin. Arch Biochem Biophys 1992; 292: 228–233.

    Article  PubMed  CAS  Google Scholar 

  26. Collodi P, Miranda CL, Zhao X, Buhler DR and Barnes DW. Induction of zebrafish (Brachydanio rerio) P450 in vivo and in cell culture. Xenobiotica 1994; 24: 487–493.

    Article  PubMed  CAS  Google Scholar 

  27. Xiao GH, Pinaire JA, Rodrigues AD and Prough RA. Regulation of the Ah gene battery via Ah receptor-dependent and independent processes in cultured adult rat hepatocytes. Drug Metab Dispos 1995; 23: 642–650.

    PubMed  CAS  Google Scholar 

  28. Williams GM. Detection of chemical carcinogens by unscheduled DNA synthesis in rat liver primary cell cultures. Cancer Res 1977; 37: 1845–1851.

    PubMed  CAS  Google Scholar 

  29. Storer RD, Mckelvey TW, Kraynak AR, Elia MC, Barnum JE et al. Revalidation of the in vitro alkaline elution/rat hepatocyte assay for DNA damage: improved criteria for assessment of cytotoxicity and genotoxicity and results for 81 compounds. Mutat Res 1996; 368: 59–101.

    Article  PubMed  CAS  Google Scholar 

  30. Holme JA, Bjorge C, Soderlund EJ, Brunborg G, Becher R et al. Genotoxic effects of cyclopenta-fused polycyclic aromatic hydrocarbons in isolated rat hepatocytes and rabbit lung cells. Carcinogenesis 1993; 14: 1125–1131.

    Article  PubMed  CAS  Google Scholar 

  31. Muller-Tegethoff K, Kersten B, Kasper P and Muller L. Application of the in vitro rat hepatocyte micronucleus assay in genetic toxicology testing. Mutat Res 1997; 392: 125–138.

    Article  PubMed  CAS  Google Scholar 

  32. Eberhart J, Coffing SL, Anderson JN, Marcus C, Kalogeris TJ et al. The time-dependent increase in the binding of benzo[a]pyrene to DNA through (+)-antibenzo[a]pyrene-7,8-dio1–9,10-epoxide in primary rat hepatocyte cultures results from induction of cytochrome P4501A1 by benzo[a]pyrene treatment. Carcinogenesis 1992; 13: 297–301.

    Article  PubMed  CAS  Google Scholar 

  33. Denizeau F and Marion M. Genotoxic effects of heavy metals in rat hepatocytes. Cell Biol Toxicol 1989; 5: 15–25.

    Article  PubMed  CAS  Google Scholar 

  34. Dubois M, Pfohl-Leszkowicz A, Grosse Y and Kremers P. DNA adducts and P-450 induction in human, rat and avian liver cells after exposure to polychlorobiphenyls. Mutat Res 1995; 345: 181–190.

    Article  PubMed  CAS  Google Scholar 

  35. Denizeau F, Marion M, Chevalier G and Coté MG. Genotoxicity of dimethylnitrosamine in the presence of chrysotile asbestos UICC B and xonotlite. Carcinogenesis 1985; 6: 1815–1817.

    Article  PubMed  CAS  Google Scholar 

  36. Lachapelle M, Fadlallah S, Krzystyniak K, Fournier M, Cooper S and Denizeau F. Colloidal gold ultraimmunocytochemical localization of DNA and RNA adducts in rat hepatocytes. Carcinogenesis 1992; 13: 2335–2339.

    Article  PubMed  CAS  Google Scholar 

  37. Lachapelle M, Marion M, Krzystyniak K, Fournier M and Denizeau F. Immunocytochemical evidence for a nuclear and a cytoplasmic 0–6-methylguanine repair mechanism in cultured rat hepatocytes. J Toxicol Environ Health 1994; 43: 441–451.

    Article  PubMed  CAS  Google Scholar 

  38. Encell L, Foiles PG and Gold B. The relationship between N-nitrosodimethylamine metabolism and DNA methylation in isolated rat hepatocytes. Carcinogenesis 1996; 17: 1127–1134.

    Article  PubMed  CAS  Google Scholar 

  39. Shu L and Hollenberg PF. Role of cytochrome P-450 in DNA damage induced by Nnitrosodialkylamines in cultured rat hepatocytes. Carcinogenesis 1996; 17: 569–576.

    Article  PubMed  CAS  Google Scholar 

  40. Cloutier JF and Castonguay A. Modulation of DNA repair by various inhibitors of DNA synthesis following 4-(methylnitro-samino)1–1-(3-pyridyl)-1-butanone (NNK) induced DNA damage. Chem Biol Interact 1998; 110: 7–25.

    Article  PubMed  CAS  Google Scholar 

  41. Jutras D, Marion M and Denizeau F. The effects of putative DNA repair inhibitors on DNA adduct levels and unscheduled DNA synthesis in rat hepatocytes exposed to 2acetylaminofluorene. Mutat Res 1989; 216: 35–42.

    Article  PubMed  CAS  Google Scholar 

  42. Piscator M. On cadmium in normal human kidneys together with a report on the isolation of metallothionein from livers of cadmium-exposed rabbits. Nord Hyg Tikskr 1964; 45: 76–82.

    CAS  Google Scholar 

  43. Din WS and Frazier IM. Protective effect of metallothionein on cadmium toxicity in isolated rat hepatocytes. Biochem J 1985; 230: 395–402.

    PubMed  CAS  Google Scholar 

  44. Liu J, Kershaw WC and Klassen CD. The protective effect of metallothionein on the toxicity of various metals in rat primary hepatocyte culture. Toxicol Appl Pharmacol 1991; 107: 27–34.

    Article  PubMed  CAS  Google Scholar 

  45. Liu J, Kershaw WC and Klaassen CD. Rat primary hepatocyte cultures are a good model for examining metallothionein-induced tolerance to cadmium toxicity. In Vitro Cell Dev Biol 1990; 26: 75–79.

    Article  CAS  Google Scholar 

  46. Gagné F, Marion M and Denizeau F. Metal homeostasis and metallothionein induction in rainbow trout hepatocytes exposed to cadmium. Fund Appl Toxicol 1990; 14: 429–437.

    Article  Google Scholar 

  47. Moffatt P, Plaa GL and Denizeau F. Rat hepatocytes with elevated metallothionein expression are resistant to N-Methyl-N-nitro-N-nitrosoguanidine cytotoxicity. Toxicol Appl Pharmacol 1996; 136: 200–207.

    Article  PubMed  CAS  Google Scholar 

  48. Haïdara K, Moffatt P and Denizeau F. Metallothionein induction attenuates the effects of glutathione depletors in rat hepatocytes. Toxicol Sci 1999; 49: 297–305.

    Article  PubMed  Google Scholar 

  49. Moffatt P and Denizeau F. Metallothionein in physiological and physiopathological processes. Drug Metab Rev 1997; 29: 261–307.

    Article  PubMed  CAS  Google Scholar 

  50. Beattie JH, Marion M and Denizeau F. The modulation by metallothionein of cadmium-induced cytotoxicity in primary hepatocyte cultures. Toxicology 1987; 44: 329–339.

    Article  PubMed  CAS  Google Scholar 

  51. Lachapelle M, Guertin F, Marion M, Fournier M and Denizeau F. Mercuric chloride affects protein secretion in rat primary hepatocyte cultures: a biochemical ultrastructural, and gold immunocytochemical study. J Toxicol Environ Health 1993; 38: 343–354.

    Article  PubMed  CAS  Google Scholar 

  52. Flouriot G, Pakdel F, Ducouret B and Valotaire Y. Influence of xenobiotics on rainbow trout liver estrogen receptor and vitellogenin gene expression. J Mol Endocrinol 1995; 15: 143–151.

    Article  PubMed  CAS  Google Scholar 

  53. Petit F, Le Goff P, Cravédi JP, Valotaire Y and Pakdel F. Two complementary bioassays for screening the estrogenic potency of xenobiotics: recombinant yeast for trout estrogen receptor and trout hepatocyte cultures. J Mol Endocrinol 1997; 19: 32 1335.

    Google Scholar 

  54. Pelissero C, Flouriot G, Foucher JL, Bennetau B, Dunogueès J, Le Gac F and Sumpter JP. Vitellogenin synthesis in cultured hepatocytes; and in vitro test for the estrogenic potency of chemicals. J Steroid Biochem Molec Biol 1993; 44: 263–272.

    Article  PubMed  CAS  Google Scholar 

  55. Mugiya Y and Tanahashi A. Inhibitory effects of aluminium on vitellogenin induction by estradiol-17 f3 in the primary culture of hepatocytes in the rainbow trout Oncorhynchus mykiss. Gen Comp Endocrinol 1998; 109: 37–43.

    Article  PubMed  CAS  Google Scholar 

  56. Krajnc EI, Wester PW, Loeber JG, Van Leeuwen FXR, Vos JG, Vaessen HAMG and Van der Heijden CA. Toxicity of bis(tri-n-butyltin)oxide in the rat. I. Short-term effects on general parameters and on the endocrine and lymphoïd systems. Toxicol Appl Pharmacol 1984; 75: 363–386.

    CAS  Google Scholar 

  57. Reader S, Marion M and Denizeau F. Flow cytometric analysis of the effects of tri-nbutyltin chloride on cytosolic free calcium and thiol levels in isolated rainbow trout hepatocytes. Toxicology 1993; 80: 117–129.

    Article  PubMed  CAS  Google Scholar 

  58. Reader S, Steen FIB and Denizeau F. Intracellular calcium and pH alterations induced by tri-n-butyltin chloride in isolated rainbow trout hepatocytes: A flow cytometric analysis. Arch Biochem Biophys 1994; 312: 407–413.

    Article  PubMed  CAS  Google Scholar 

  59. Nieminen AL, Gores GJ, Dawson TI, Herman B and Lemasters JJ. Toxic injury from mercuric chloride in rat hepatocytes. J Biol Chem 1990; 265: 2399–2408.

    PubMed  CAS  Google Scholar 

  60. Nathanson MH, Mariwalla K, Ballatori N, and Boyer JL. Effects of Hg2+ on cytosolic Cat+ in isolated skate hepatocytes. Cell Calcium 1995; 18: 429–439.

    Article  PubMed  CAS  Google Scholar 

  61. Koizumi T, Yokota T, Shirakura H, Tatsumoto H and Suzuki KT. Potential mechanism of cadmium-induced cytotoxicity in rat hepatocytes: inhibitory action of cadmium on mitochondrial respiratory activity. Toxicology 1994; 92: 115–125.

    Article  PubMed  CAS  Google Scholar 

  62. Koizumi T, Yokota T, Ohmori S, Kumagai H and Suzuki KT. Protective effect of metallothionein on intracellular pH changes induced by cadmium. Toxicology 1995; 95: 11–17.

    Article  PubMed  CAS  Google Scholar 

  63. Martel J, Marion M and Denizeau F. Effect of cadmium on membrane potential in isolated rat hepatocytes. Toxicology 1990; 60: 161–172.

    Article  PubMed  CAS  Google Scholar 

  64. Kamendulis LM and Corcoran GB. DNA as a critical target in toxic cell death: enhancement of dimethylnitrosamine cytotoxicity by DNA repair inhibitors. J Pharmacol Exp Ther 1994; 271: 1695–1698.

    PubMed  CAS  Google Scholar 

  65. Kamendulis LM and Corcoran GB. Dimethylnitrosamine-induced DNA damage and toxic cell death in cultured mouse hepatocytes. J Toxicol Environ Health 1995; 46: 31–46.

    Article  PubMed  CAS  Google Scholar 

  66. Ray SD, Kamendulis LM, Sorge CL and Corcoran GB. Cat+-activated DNA fragmentation in dimethylnitrosamine-induced hepatic necrosis: Effects of Cat+endonuclease and poly(ADP-ribose) polymerase inhibitors in mice. J Pharmacol Exp Ther 1992; 263: 387–394.

    PubMed  CAS  Google Scholar 

  67. Raffray M and Cohen GM. Thymocyte apoptosis as a mechanism for tributyltininduced thymic atrophy in vivo. Arch Toxicol 1993; 67: 231–236.

    Article  PubMed  CAS  Google Scholar 

  68. Reader S, Moutardier V and Denizeau F. Tributyltin triggers apoptosis in trout hepatocytes: The role of Cat+, protein kinase C and proteases. Biochim Biophys Acta 1999; 1448: 473–485.

    Article  PubMed  CAS  Google Scholar 

  69. Wörner W and Schrenk D. Influence of liver tumor promoters on apoptosis in rat hepatocytes induced by 2-acetylaminofluorene, ultraviolet light, or transforming growth factor f31. Cancer Res 1996; 56: 1272–1278.

    PubMed  Google Scholar 

  70. Suter GW. Defining the field. In: Suter GW, Ed. Ecological Risk Assessment. Chelsea. Michigan: Lewis Publishers, 1993: 3–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michael N. Berry Anthony M. Edwards

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Reader, S., Denizeau, F. (2000). The use of isolated hepatocytes to study the mechanisms of action of environmental contaminants. In: Berry, M.N., Edwards, A.M. (eds) The Hepatocyte Review. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3345-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3345-8_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5402-9

  • Online ISBN: 978-94-017-3345-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics