Skip to main content

The protective role of nitric oxide in hepatocytes during responses to inflammatory mediators and induction of apoptosis

  • Chapter
The Hepatocyte Review

Abstract

The acute phase response (APR) has evolved in multicellular organisms as a result of their ever-changing surroundings. It refers to the alterations in cellular metabolism and genetic expression that have allowed organisms to maintain homeostasis and survive environmental stress. Frequently the APR is a systemic reaction to external stimuli, such as trauma, burn or infection; however it can also result from internal stimuli, such as neoplasia, pregnancy, or immunopathology [1]. The gross changes include: fever, somnolence, anorexia, thrombocytopenia, alterations in the hormonal milieu, and a net-negative nitrogen balance as the result of decreased protein synthesis [2]. Many of these changes are now understood to be the result of signalling cascades that act through inflammatory mediators, on individual cells, to produce organ specific responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kushner I. The phenomenon of the acute phase response. Ann N Y Acad Sci 1982; 389: 39–48.

    Article  PubMed  CAS  Google Scholar 

  2. Mackiewicz A, Kushner I and Baumann H, Eds. Acute phase proteins: Molecular biology, biochemistry, and clinical applications. London: CRC Press, 1993.

    Google Scholar 

  3. Billiar TR and Curran RD, Eds. Hepatocyte and Kupffer cell interactions. Boca Raton: CRC Press, 1992.

    Google Scholar 

  4. Kushner I. Regulation of the acute phase response by cytokines. Perspect Biol Med 1993; 36: 611–622.

    PubMed  CAS  Google Scholar 

  5. Azam M, Gupta G, Chen W, Wellington S, Warburton D and Danziger RS. Genetic mapping of soluble guanylyl cyclase genes: implications for linkage to blood pressure in the Dahl rat. Hypertension 1998; 32: 149–154.

    Article  PubMed  CAS  Google Scholar 

  6. Billiar TR, Curran RD, Harbrecht BG, Stadler J, Williams DL et al. Association between synthesis and release of cGMP and nitric oxide biosynthesis by hepatocytes. Am J Physiol 1992; 262: C1077 - C1082.

    PubMed  CAS  Google Scholar 

  7. Geller DA and Billiar TR. Molecular biology of nitric oxide synthases. Cancer Metastasis Rev 1998; 17: 7–23.

    Article  PubMed  CAS  Google Scholar 

  8. Billiar TR, Curran RD, Stuehr DJ, West MA, Bentz BG and Simmons RL. An Larginine-dependent mechanism mediates Kupffer cell inhibition of hepatocyte protein synthesis in vitro. J Exp Med 1989; 169: 1467–1472.

    Article  PubMed  CAS  Google Scholar 

  9. Curran RD, Billiar TR, Stuehr DJ, Hofmann K and Simmons RL. Hepatocytes produce nitrogen oxides from L-arginine in response to inflammatory products of Kupffer cells. J Exp Med 1989; 170: 1769–1774.

    Article  PubMed  CAS  Google Scholar 

  10. Curran RD, Billiar TR, Stuehr DJ, Ochoa JB, Harbrecht BG, Flint SG and Simmons RL. Multiple cytokines are required to induce hepatocyte nitric oxide production and inhibit total protein synthesis. Ann Surg 1990; 212: 462–469.

    Article  PubMed  CAS  Google Scholar 

  11. Nussler AK, Di Silvio M, Billiar TR, Hoffman RA, Geller DA et al. Stimulation of the nitric oxide synthase pathway in human hepatocytes by cytokines and endotoxin. J Exp Med 1992; 176: 261–264.

    Article  PubMed  CAS  Google Scholar 

  12. Geller DA, Nussler AK, Di Silvio M, Lowenstein CJ, Shapiro RA et al. Cytokines, endotoxin, and glucocorticoids regulate the expression of inducible nitric oxide synthase in hepatocytes. Proc Natl Acad Sci 1993; 90: 522–526.

    Article  PubMed  CAS  Google Scholar 

  13. Geller DA, Lowenstein CJ, Shapiro RA, Nussler AK, Di Silvio M et al. Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes. Proc Natl Acad Sci 1993; 90: 3491–3495.

    Article  PubMed  CAS  Google Scholar 

  14. Nussler AK, Geller DA, Sweetland MA, Di Silvio M, Billiar TR et al. Induction of nitric oxide synthesis and its reactions in cultured human and rat hepatocytes stimulated with cytokines plus LPS. Biochem Biophys Res Commun 1993; 194: 826–835.

    Article  PubMed  CAS  Google Scholar 

  15. Mannick JB, Asano K, Izumi K, Kieff E and Stamler JS. Nitric oxide produced by human B lymphocytes inhibits apoptosis and Epstein-Barr virus reactivation. Cell 1994; 79: 1137–1146.

    Article  PubMed  CAS  Google Scholar 

  16. Asano K, Chee CB, Gaston B, Lilly CM, Gerard C, Drazen JM and Stamler JS. Constitutive and inducible nitric oxide synthase gene expression, regulation, and activity in human lung epithelial cells. Proc Natl Acad Sci 1994; 91: 10089–10093.

    Article  PubMed  CAS  Google Scholar 

  17. Geller DA, Di Silvio M, Nussler AK, Wang SC, Shapiro RA, Simmons RL and Billiar TR. Nitric oxide synthase expression is induced in hepatocytes in vivo during hepatic inflammation. J Surg Res 1993; 55: 427–432.

    Article  PubMed  CAS  Google Scholar 

  18. Xie QW, Whisnant R and Nathan C. Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon y and bacterial lipopolysaccharide. J Exp Med 1993; 177: 1779–1784.

    Article  PubMed  CAS  Google Scholar 

  19. de Vera ME, Shapiro RA, Nussler AK, Mudgett JS, Simmons RL et al. Transcriptional regulation of human inducible nitric oxide synthase (N052) gene by cytokines: initial analysis of the human NOS2 promoter. Proc Natl Acad Sci 1996; 93: 1054–1059.

    Article  PubMed  Google Scholar 

  20. Taylor BS, de Vera ME, Ganster RW, Wang Q, Shapiro RA et al. Multiple NY-:KB enhancer elements regulate cytokine induction of the human inducible nitric oxide synthase gene. J Biol Chem 1998; 273: 15148–15156.

    Article  PubMed  CAS  Google Scholar 

  21. Xie QW, Kashiwabara Y and Nathan C. Role of transcription factor NF-x B/Rel in induction of nitric oxide synthase. J Biol Chem 1994; 269: 4705–4708.

    PubMed  CAS  Google Scholar 

  22. Griscavage JM, Wilk S and Ignarro LJ. Inhibitors of the proteasome pathway interfere with induction of nitric oxide synthase in macrophages by blocking activation of transcription factor NF-K B. Proc Natl Acad Sci 1996; 93: 3308–3312.

    Article  PubMed  CAS  Google Scholar 

  23. Billiar TR, Curran RD, West MA, Hofmann K and Simmons RL. Kupffer cell cytotoxicity to hepatocytes in coculture requires L-arginine. Arch Surg 1989; 124: 1416–1420.

    Article  PubMed  CAS  Google Scholar 

  24. Brune B and Sandau K. the role of NO in cell injury. Toxicol Lett 1995; 82/83: 233237.

    Google Scholar 

  25. Hortelano S, Dallaporta B, Zamzami N, Hirsch T, Susin SA et al. Nitric oxide induces apoptosis via triggering mitochondrial permeability transition. FEBS Lett 1997; 410: 373–377.

    Article  PubMed  CAS  Google Scholar 

  26. Thomae KR, Joshi PC, Davies P, Pitt BR, Billiar TR, Simmons RL and Nakayama DK. Nitric oxide produced by cytokine-activated pulmonary artery smooth muscle cells is cytotoxic to cocultured endothelium. Surgery 1996; 119: 61–66.

    Article  PubMed  CAS  Google Scholar 

  27. Szabo C, Southan GJ and Thiemermann C. Beneficial effects and improved survival in rodent models of septic shock with S-methylisothiourea sulfate, a potent and selective inhibitor of inducible nitric oxide synthase. Proc Natl Acad Sci 1994; 91: 12472–12476.

    Article  PubMed  CAS  Google Scholar 

  28. Stadler J, Billiar TR, Curran RD, Stuehr DJ, Ochoa JB and Simmons RL. Effect of exogenous and endogenous nitric oxide on mitochondrial respiration of rat hepatocytes. Am J Physiol 1991; 260: C910 - C916.

    PubMed  CAS  Google Scholar 

  29. Cleeter MW, Cooper JM, Darley-Usmar VM, Moncada S and Schapira AH. Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases. FEBS Lett 1994; 345: 50–54.

    Article  PubMed  CAS  Google Scholar 

  30. Messmer UK, Ankarcrona M, Nicotera P and Brune B. p53 expression in nitric oxide-induced apoptosis. FEBS Letters 1994; 355: 23–26.

    Article  PubMed  CAS  Google Scholar 

  31. Fehsel K, Kroncke KD, Meyer KL, Huber H, Wahn V and Kolb-Bachofen V. Nitric oxide induces apoptosis in mouse thymocytes. J Immunol 1995; 155: 2858–2865.

    PubMed  CAS  Google Scholar 

  32. Albina JE, Cui S, Mateo RB and Reichner JS. Nitric oxide-mediated apoptosis in murine peritoneal macrophages. J Immunol 1993; 150: 5080–5085.

    PubMed  CAS  Google Scholar 

  33. Wink DA, Hanbauer I, Krishna MC, DeGraff W, Gamson J and Mitchell JB. Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc Natl Acad Sci 1993; 90: 9813–9817.

    Article  PubMed  CAS  Google Scholar 

  34. Wink DA, Cook JA, Pacelli R, Liebmann J, Krishna MC and Mitchell JB. Nitric oxide (NO) protects against cellular damage by reactive oxygen species. Toxicol Left 1995; 82–83: 221–226.

    Article  Google Scholar 

  35. Tenneti L, D’Emilia DM and Lipton SA. Suppression of neuronal apoptosis by Snitrosylation of caspases. Neurosci Lett 1997; 236: 139–142.

    Article  PubMed  CAS  Google Scholar 

  36. Nishida J, McCuskey RS, McDonnell D and Fox ES. Protective role of NO in hepatic microcirculatory dysfunction during endotoxemia. Am J Physiol 1994; 267: G1135 - G1141.

    PubMed  CAS  Google Scholar 

  37. Mueller AR, Platz KP, Langrehr JM, Hoffman RA, Nussler AK et al. The effects of administration of nitric oxide inhibitors during small bowel preservation and reperfusion. Transplantation 1994; 58: 1309–1316.

    PubMed  CAS  Google Scholar 

  38. Moncada S and Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med 1993; 329: 2002–2012.

    Article  PubMed  CAS  Google Scholar 

  39. Ignarro LJ. Heme-dependent activation of soluble guanylate cyclase by nitric oxide: regulation of enzyme activity by porphyrins and metalloporphyrins. Semin Hematol 1989; 26: 63–76.

    PubMed  CAS  Google Scholar 

  40. Stamler JS. Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 1994; 78: 931–936.

    Article  PubMed  CAS  Google Scholar 

  41. Curran RD, Ferrari FK, Kispert PH, Stadler J, Stuehr DJ, Simmons RL and Billiar TR. Nitric oxide and nitric oxide-generating compounds inhibit hepatocyte protein synthesis. FASEB Journal 1991; 5: 2085–2092.

    PubMed  CAS  Google Scholar 

  42. Kim YM, Son K, Hong SJ, Green A, Chen JJ, Tzeng E, Hierholzer C and Billiar TR. Inhibition of protein synthesis by nitric oxide correlates with cytostatic activity: nitric oxide induces phosphorylation of initiation factor eIF-2 a. Mol Med 1998; 4: 179190.

    Google Scholar 

  43. Stadler J, Curran RD, Ochoa JB, Harbrecht BG, Hoffman RA et al. Effect of endogenous nitric oxide on mitochondrial respiration of rat hepatocytes in vitro and in vivo. Arch Surg 1991; 126: 186–191.

    Article  PubMed  CAS  Google Scholar 

  44. Kim YM, Bergonia H and Lancaster JRJ. Nitrogen oxide-induced autoprotection in isolated rat hepatocytes. FEBS Lett 1995; 374: 228–232.

    Article  PubMed  CAS  Google Scholar 

  45. Keppler D, Lesch R, Reutter W and Decker K. Experimental hepatitis induced by Dgalactosamine. Exp Mol Pathol 1968; 9: 279–290.

    Article  PubMed  CAS  Google Scholar 

  46. Leist M, Gantner F, Bohlinger I, Germann PG, Tiegs G and Wendel A. Murine hepatocyte apoptosis induced in vitro and in vivo by TNF-a requires transcriptional arrest. J Immunol 1994; 153: 1778–1788.

    PubMed  CAS  Google Scholar 

  47. Leist M, Gantner F, Bohlinger I, Tiegs G, Germann PG and Wendel A. Tumor necrosis factor-induced hepatocyte apoptosis precedes liver failure in experimental murine shock models. Am J Pathol 1995; 146: 1220–1234.

    PubMed  CAS  Google Scholar 

  48. Leist M, Gantner F, Jilg S and Wendel A. Activation of the 55 kDa TNF receptor is necessary and sufficient for TNF-induced liver failure, hepatocyte apoptosis, and nitrite release. J Immunol 1995; 154: 1307–1316.

    PubMed  CAS  Google Scholar 

  49. Kim YM, deVera ME, Watkins SC and Billiar TR. Nitric oxide protects cultured rat hepatocytes from tumor necrosis factor-a-induced apoptosis by inducing heat shock protein 70 expression. J Biol Chem 1997; 272: 1402–1411.

    Article  PubMed  CAS  Google Scholar 

  50. Kroemer G, Petit P, Zamzami N, Vayssiere JL and Mignotte B. The biochemistry of programmed cell death. FASEB J 1995; 9: 1277–1287.

    PubMed  CAS  Google Scholar 

  51. Thompson C. Apoptosis in the pathogenesis and treatment of disease. Science 1995; 267: 1456–1462.

    Article  PubMed  CAS  Google Scholar 

  52. Leist M, Gantner F, Naumann H, Bluethmann H, Vogt K et al. Tumor necrosis factor-induced apoptosis during the poisoning of mice with hepatotoxins. Gastroenterology 1997; 112: 923–934.

    Article  PubMed  CAS  Google Scholar 

  53. Nagata S. Apoptosis by death factor. Cell 1997; 88: 355–365.

    Article  PubMed  CAS  Google Scholar 

  54. Hunter DR and Haworth RA. The Cat+-induced membrane transition in mitochondria. I. The protective mechanisms. Arch Biochem Biophys 1979; 195: 453–459.

    Article  PubMed  CAS  Google Scholar 

  55. Hunter DR and Haworth RA. The Cat+-induced membrane transition in mitochondria. III. Transitional Cat+ release. Arch Biochem Biophys 1979; 195: 468–477.

    Article  PubMed  CAS  Google Scholar 

  56. Haworth RA and Hunter DR. The Cat+-induced membrane transition in mitochondria. II. Nature of the Cat+ trigger site. Arch Biochem Biophys 1979; 195: 460–467.

    Article  PubMed  CAS  Google Scholar 

  57. Fournier N, Ducet G and Crevat A. Action of cyclosporine on mitochondrial calcium fluxes. J Bioenerg Biomembr 1987; 19: 297–303.

    Article  PubMed  CAS  Google Scholar 

  58. Halestrap AP and Davidson AM. Inhibition of Cat(+)-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochem J 1990; 268: 153–160.

    PubMed  CAS  Google Scholar 

  59. Zamzami N, Marchetti P, Castedo M, Zanin C, Vayssiere JL, Petit PX and Kroemer G. Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J Exp Med 1995; 181: 1661–1672.

    Article  PubMed  CAS  Google Scholar 

  60. Vander Heiden MG, Chandel NS, Williamson EK, Schumacker PT and Thompson CB. Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell 1997; 91: 627–637.

    Article  Google Scholar 

  61. Marchetti P, Castedo M, Susin SA, Zamzami N, Hirsch T et al. Mitochondrial permeability transition is a central coordinating event of apoptosis. J Exp Med 1996; 184: 1155–1160.

    Article  PubMed  CAS  Google Scholar 

  62. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES and Wang X. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997; 91: 479–489.

    Article  PubMed  CAS  Google Scholar 

  63. Costantini P, Chernyak BV, Petronilli V and Bernardi P. Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites. J Biol Chem 1996; 271: 6746–6751.

    Article  PubMed  CAS  Google Scholar 

  64. Nagata S and Golstein P. The Fas death factor. Science 1995; 267: 1449–1456.

    Article  PubMed  CAS  Google Scholar 

  65. Kroemer G, Zamzami N and Susin SA. Mitochondrial control of apoptosis. Immunol Today 1997; 18: 44–51.

    Article  PubMed  CAS  Google Scholar 

  66. Vercesi AE, Kowaltowski AJ, Grijalba MT, Meinicke AR and Castilho RF. The role of reactive oxygen species in mitochondrial permeability transition. Biosci Rep 1997; 17: 43–52.

    Article  PubMed  CAS  Google Scholar 

  67. Castedo M, Hirsch T, Susin SA, Zamzami N, Marchetti P, Macho A and Kroemer G. Sequential acquisition of mitochondrial and plasma membrane alterations during early lymphocyte apoptosis. J Immunol 1996; 157: 512–521.

    PubMed  CAS  Google Scholar 

  68. Kerr JF, Wyllie AH and Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26: 239–257.

    Article  PubMed  CAS  Google Scholar 

  69. Liu ZG, Hsu H, Goeddel DV and Karin M. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-KB activation prevents cell death. Cell 1996; 87: 565–576.

    Article  PubMed  CAS  Google Scholar 

  70. Schulze-Osthoff K, Ferrari D, Los M, Wesselborg S and Peter ME. Apoptosis signaling by death receptors. Eur J Biochem 1998; 254: 439–459.

    Article  PubMed  CAS  Google Scholar 

  71. Casciola-Rosen L, Nicholson DW, Chong T, Rowan KR, Thornberry NA et al. Apopain/CPP32 cleaves proteins that are essential for cellular repair: a fundamental principle of apoptotic death. J Exp Med 1996; 183: 1957–1964.

    Article  PubMed  CAS  Google Scholar 

  72. Sakahira H, Enari M and Nagata S. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 1998; 391: 96–99.

    Article  PubMed  CAS  Google Scholar 

  73. Stridh H, Kimland M, Jones DP, Orrenius S and Hampton MB. Cytochrome c release and caspase activation in hydrogen peroxide-and tributyltin-induced apoptosis. FEBS Lett 1998; 429: 351–355.

    Article  PubMed  CAS  Google Scholar 

  74. Scarlett JL and Murphy MP. Release of apoptogenic proteins from the mitochondrial intermembrane space during the mitochondrial permeability transition. FEBS Lett 1997; 418: 282–286.

    Article  PubMed  CAS  Google Scholar 

  75. Petit PX, Goubern M, Diolez P, Susin SA, Zamzami N and Kroemer G. Disruption of the outer mitochondrial membrane as a result of large amplitude swelling: the impact of irreversible permeability transition. FEBS Lett 1998; 426: 111–116.

    Article  PubMed  CAS  Google Scholar 

  76. Kuwana T, Smith JJ, Muzio M, Dixit V, Newmeyer DD and Kornbluth S. Apoptosis induction by caspase-8 is amplified through the mitochondrial release of cytochrome c. J Biol Chem 1998; 273: 16589–16594.

    Article  PubMed  CAS  Google Scholar 

  77. Kim YM, Talanian RV and Billiar TR. Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanisms. J Biol Chem 1997; 272: 31138–31148.

    Article  PubMed  CAS  Google Scholar 

  78. Mohr S, Stamler JS and Brune B. Posttranslational modification of glyceraldehyde-3phosphate dehydrogenase by S-nitrosylation and subsequent NADH attachment. J Biol Chem 1996; 271: 4209–4214.

    Article  PubMed  CAS  Google Scholar 

  79. McDonald LJ and Moss J. Stimulation by nitric oxide of an NAD linkage to glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci 1993; 90: 62386241.

    Google Scholar 

  80. Li J, Billiar TR, Talanian RV and Kim YM. Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation. Biochem Biophys Res Commun 1997; 240: 419–424.

    Article  PubMed  CAS  Google Scholar 

  81. Saavedra JE, Billiar TR, Williams DL, Kim YM, Watkins SC and Keefer LK. Targeting nitric oxide (NO) delivery in vivo. Design of a liver-selective NO donor prodrug that blocks tumor necrosis factor-a-induced apoptosis and toxicity in the liver. J Med Chem 1997; 40: 1947–1954.

    Article  PubMed  CAS  Google Scholar 

  82. Ou J, Carlos TM, Watkins SC, Saavedra JE, Keefer LK et al. Differential effects of nonselective nitric oxide synthase (NOS) and selective inducible NOS inhibition on hepatic necrosis, apoptosis, ICAM-1 expression, and neutrophil accumulation during endotoxemia. Nitric Oxide 1997; 1: 404–416.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michael N. Berry Anthony M. Edwards

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bombeck, C.A., Li, J., Kim, YM., Billiar, T.R. (2000). The protective role of nitric oxide in hepatocytes during responses to inflammatory mediators and induction of apoptosis. In: Berry, M.N., Edwards, A.M. (eds) The Hepatocyte Review. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3345-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3345-8_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5402-9

  • Online ISBN: 978-94-017-3345-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics