Skip to main content

Permeabilisation of hepatocytes with α-toxin

  • Chapter
The Hepatocyte Review

Abstract

In large part, current concepts of eukaryotic cell metabolism are based on results obtained with disrupted cells and subcellular fractions. These preparations have been preferred to isolated cell suspensions and cell cultures for analysing enzymatic steps in different pathways, since the plasma membrane makes the interior of intact cells inaccessible to various substrates and modulators. However, apart from disrupting the normal spatial relationship between cellular organelles, homogenisation may also disintegrate functional enzyme units in the cell, to the detriment of complex reaction sequences and control systems. As a consequence, the coupling of individual steps in metabolic pathways, e.g. “channelling” of intermediates between enzymes, is obscured [1]. Evidence for such “topodynamic regulation” of intermediary metabolism has accumulated over the past years and has led to a dramatic increase in our knowledge of metabolic regulation [2–4]. Another important, and sometimes overlooked, drawback of homogenates and subcellular fractions is the risk for proteolytic or other alteration of the proteins, enzymes or other macromolecules, that are the subject of investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Srere PA. Complexes of sequential metabolic enzymes. Annu Rev Biochem 1987; 56: 89–124.

    Article  PubMed  CAS  Google Scholar 

  2. Kent C. Eukaryotic phospholipid biosynthesis. Annu Rev Biochem 1995; 64: 315343.

    Google Scholar 

  3. Cheung C-W, Cohen NS and Raijman L. Channeling of urea cycle intermediates in situ in permeabilized hepatocytes. J Biol Chem 1989; 264: 4038–4044.

    PubMed  CAS  Google Scholar 

  4. George TP, Cook HW, Byers DM, Palmer FB and Spence MW. Channeling of intermediates in the CDP-choline pathway of phosphatidylcholine biosynthesis in cultured glioma cells is dependent on intracellular Cat+. J Biol Chem 1991; 266: 12419–12423.

    PubMed  CAS  Google Scholar 

  5. Bhakdi S, Weller U, Walev I, Martin E, Jonas D et al. A guide to the use of pore-forming toxins for controlled permeabilization of cell membranes. Med Microbiol Immunol 1993; 182: 167–175.

    Article  PubMed  CAS  Google Scholar 

  6. Schulz I. Permeabilizing cells: some methods and applications for the study of intracellular processes. Meth Enzymol 1990; 192: 280–299.

    Article  PubMed  CAS  Google Scholar 

  7. Felix H. Permeabilized and immobilized cells. Meth Enzymol 1988; 137: 637–641.

    Article  PubMed  CAS  Google Scholar 

  8. Lepers A, Cacan R and Verbert A. Permeabilized cells as a way of gaining access to intracellular organelles: an approach to glycosylation reactions. Biochim 1990; 72: 15.

    Article  Google Scholar 

  9. Bossuyt X and Blanckaert N. Topology of nucleotide-sugar: dolichyl phosphate glycosyltransferases involved in the dolichol pathway for protein glycosylation in native rat liver microsomes. Biochem J 1993; 296: 627–632.

    PubMed  CAS  Google Scholar 

  10. Rutter GA and Denton RM. Regulation of NADtlinked isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase by Cat+ ions within toluene-permeabilized rat heart mitochondria. Interactions with regulation by adenine nucleotides and NADH/NAD+ ratios. Biochem J 1988; 252: 181–189.

    PubMed  CAS  Google Scholar 

  11. Mayorek N and Bar-Tana J. Lipid synthesis in permeabilized cultured rat hepatocytes. J Biol Chem 1989; 264: 4450–4455.

    PubMed  CAS  Google Scholar 

  12. Kaminskas E and Li JC. DNA fragmentation in permeabilized cells and nuclei. Biochem J 1989; 261: 17–21.

    PubMed  CAS  Google Scholar 

  13. Stephens TW and Harris RA. Effect of starvation and diabetes on the sensitivity of camitine palmitoyltransferase Ito inhibition by 4-hydroxyphenylglyoxylate. Biochem J 1987; 243: 405–412.

    PubMed  CAS  Google Scholar 

  14. Jackson SA, Thomson MJ and Clegg JS. Glycolysis compared in intact, permeabilized and sonicated L-929 cells. FEBS Lett 1990; 262: 212–214.

    Article  PubMed  CAS  Google Scholar 

  15. Bauldry SA and Wooten RE. Induction of cytosolic phospholipase A2 activity by phosphatidic acid and diglycerides in permeabilized human neutrophils: interrelationship between phospholipases D and A2. Biochem J 1997; 322: 353–363.

    PubMed  CAS  Google Scholar 

  16. De Groote K, Naesens L, Balzarini J, Baes MI and Declercq PE. Effects of 2’,3’dideoxycytidine and 2’,3’-dideoxycytidine 5’-triphosphate on phospholipid metabolism in permeabilized rat hepatocytes. Biochem Pharmacol 1997; 54: 713–719.

    Article  PubMed  Google Scholar 

  17. Maechler P, Kennedy ED, Pozzan T and Wollheim CB. Mitochondria) activation directly triggers the exocytosis of insulin in permeabilized pancreatic 13-cells. EMBO J 1997; 16: 3833–3841.

    Article  PubMed  CAS  Google Scholar 

  18. McEwen BF and Arion WJ. Permeabilization of rat hepatocytes with Staphylococcus aureus a-toxin. J Cell Biol 1985; 100: 1922–1929.

    Article  PubMed  CAS  Google Scholar 

  19. Clegg JS and Jackson SA. Glycolysis in permeabilized L-929 cells. Biochem J 1988; 255: 335–344.

    PubMed  CAS  Google Scholar 

  20. Gankema HS, Laanen E, Groen AK et al. Characterization of isolated rat-liver cells made permeable with filipin. Eur J Biochem 1981; 119: 409–414.

    Article  PubMed  CAS  Google Scholar 

  21. Geelen MJH. Medium-chain fatty acids as short-term regulators of hepatic lipogenesis. Biochem J 1994; 302: 141–146.

    PubMed  CAS  Google Scholar 

  22. Gaussin V, Skarlas P, Ching YP, Hardie DG and Hue L. Distinct type 2A protein phosphatases activate HMG-CoA reductase and acetyl-CoA carboxylase in liver. FEBS Lett 1997; 413: 115–118.

    Article  PubMed  CAS  Google Scholar 

  23. Guzman M and Geelen MJH. Short-term inhibition of carnitine palmitoyltransferase I activity in rat hepatocytes incubated with ethanol. Biochem Biophys Res Commun 1988; 154: 682–687.

    Article  PubMed  CAS  Google Scholar 

  24. Skrede S and Bremer J. Acylcarnitine formation and fatty acid oxidation in hepatocytes from rats treated with tetradecylthioacetic acid (a 3-thia fatty acid). Biochim Biophys Acta 1993; 1167: 189–196.

    Article  PubMed  CAS  Google Scholar 

  25. Agius L. Control of glucokinase translocation in rat hepatocytes by sorbitol and the cytosolic redox state. Biochem J 1994; 298: 237–243.

    PubMed  CAS  Google Scholar 

  26. Geelen MJH, Papiez JS, Girgis K and Gibson DM. In situ measurement of HMG-CoA reductase activity in digitonin-permeabilized hepatocytes. Biochem Biophys Res Commun 1991; 180: 525–530.

    Article  PubMed  CAS  Google Scholar 

  27. Berry MN, Edwards AM and Barritt GJ. Isolated hepatocyte preparation; properties and applications. In: Burdon RH and van Knippenberg PH, Eds. Laboratory techniques in biochemistry and molecular biology 21. Amsterdam: Elsevier, 1991: 1460.

    Google Scholar 

  28. Bhakdi S and Tranum-Jensen J. a-toxin of Staphylococcus aureus. Microbiol Rev 1991; 55: 733–751.

    Google Scholar 

  29. Valeva A, Walev I, Pinkernell M, Walker B, Bayley H et al. Transmembrane (3-barrel of staphylococcal a-toxin forms in sensitive but not in resistant cells. Proc Natl Acad Sci USA 1997; 94: 11607–11611.

    Article  PubMed  CAS  Google Scholar 

  30. Valeva A, Palmer M and Bhakdi S. Staphylococcal a-toxin: formation of the heptameric pore is partially cooperative and proceeds through multiple intermediate stages. Biochem 1997; 36: 13298–13304.

    Article  CAS  Google Scholar 

  31. Bortoleto RK, de Oliveira AHC, Ruiler R, Ami RK and Ward RJ. Tertiary structural changes of the a-hemolysin from Staphylococcus aureus on association with liposome membranes. Arch Biochem Biophys 1998; 351: 47–52.

    Article  PubMed  CAS  Google Scholar 

  32. Hildebrand A, Pohl M and Bhakdi S. Staphylococcus aureus a-toxin. J Biol Chem 1991; 266: 17195–17200.

    PubMed  CAS  Google Scholar 

  33. Belmonte G, Cescatti L, Ferrari B, Nicolussi T, Ropele M et al. Pore formation by Staphylococcus aureus a-toxin in lipid bilayers. Dependence upon temperature and toxin concentration. Eur Biophys J 1987; 14: 349–358.

    Article  PubMed  CAS  Google Scholar 

  34. Thelestam M. Assay of pore-forming toxins in cultured cells using radioisotopes. Methods Enzymol 1988; 165: 278–285.

    Article  PubMed  CAS  Google Scholar 

  35. Füssle R, Bhakdi S, Sziegoleit A, Tranum-Jensen J, Kranz T et al. On the mechanism of membrane damage by Staphylococcus aureus a-toxin. J Cell Biol 1981; 91: 83–94.

    Article  PubMed  Google Scholar 

  36. Harshman S, Sugg N and Cassidy P. Preparation and purification of staphylococcal a toxin. Methods Enzymol 1988; 165: 3–7.

    Article  PubMed  CAS  Google Scholar 

  37. Lind I, Ahnert-Hilger G, Fuchs G and Gratzl M. Purification of a-toxin from Staphylococcus aureus and application to cell permeabilization. Anal Biochem 1987; 164: 84–89.

    Article  PubMed  CAS  Google Scholar 

  38. Stals HK, Mannaerts GP and Declercq PE. Factors influencing triacylglycerol synthesis in permeabilized rat hepatocytes. Biochem J 1992; 283: 719–725.

    PubMed  CAS  Google Scholar 

  39. Stals HK, Top W and Declercq PE. Regulation of triacylglycerol synthesis in permeabilized rat hepatocytes. Role of fatty acid concentration and diacylglycerol acyltransferase. FEBS Lett 1994; 343: 99–102.

    Article  PubMed  CAS  Google Scholar 

  40. Zahlten RN and Stratman FW. The isolation of hormone-sensitive rat hepatocytes by a modified enzymatic technique. Arch Biochem Biophys 1974; 163: 600–608.

    Article  PubMed  CAS  Google Scholar 

  41. Seglen O. Preparation of isolated rat liver cells. Methods Cell Biol 1976; 13: 29–83.

    Article  PubMed  CAS  Google Scholar 

  42. Craik JD and Elliott KRF. Kinetics of 3-O-methyl-D-glucose transport in isolated rat hepatocytes. Biochem J 1979; 182: 503–508.

    PubMed  CAS  Google Scholar 

  43. Gordon PB and Seglen PO. Use of electrical methods in the study of hepatocytic autophagy. Biomed Biochim Acta 1986; 45: 1635–1645.

    PubMed  CAS  Google Scholar 

  44. Jorgenson RA and Nordlie RC. Multifunctional glucose-6-phosphatase studied in permeable isolated hepatocytes. J Biol Chem 1980; 255: 5907–5915.

    PubMed  CAS  Google Scholar 

  45. Vanstapel F, Pua K and Blanckaert N. Assay of mannose-6-phosphatase in untreated and detergent-disrupted rat-liver microsomes for assessment of integrity of microsomal preparations. Eur J Biochem 1986; 156: 73–77.

    Article  PubMed  CAS  Google Scholar 

  46. Van Veldhoven PP, Just WW and Mannaerts GP. Permeability of the peroxisomal membrane to cofactors of f3-oxidation. J Biol Chem 1987; 262: 4310–4318.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michael N. Berry Anthony M. Edwards

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Declercq, P.E., Baes, M.I. (2000). Permeabilisation of hepatocytes with α-toxin. In: Berry, M.N., Edwards, A.M. (eds) The Hepatocyte Review. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3345-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3345-8_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5402-9

  • Online ISBN: 978-94-017-3345-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics