Skip to main content

Why Constructive Mathematics?

  • Chapter

Part of the book series: Vienna Circle Institute Yearbook [1995] ((VCIY,volume 3))

Abstract

The situation in constructive mathematics in the nineties is so vastly different from that in the thirties, that it is worthwhile to pause a moment to survey the development in the intermediate years. In doing so, I follow the example of Heyting, who at certain intervals took stock of intuitionistic mathematics, which for a long time was the only variety of constructive mathematics. Heyting entered the foundational debate in 1930 at the occasion of the famous Königsberg meeting.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mi. Beeson, Foundations of Constructive Mathematics. Springer Verlag, Berlin.

    Google Scholar 

  2. D. Bridges, F. Richman, Varieties of Constructive Mathematics. Cambridge University Press, Cambridge.

    Google Scholar 

  3. E. Bishop, Foundations of Constructive Analysis. McGraw-Hill, New York.

    Google Scholar 

  4. E. Bishop, D. Bridges, Constructive Analysis. Springer Verlag, Berlin.

    Google Scholar 

  5. L.E.J. Brouwer, On the Foundations of Mathematics (Dutch) Diss. Maas en Van Suchtelen, Amsterdam. English transl. in [10].

    Google Scholar 

  6. L.E.J. Brouwer, Besitzt jede reelle Zahl eine Dezimalbruchentwickelung?Math. Annalen 83, 201–210.

    Google Scholar 

  7. L.E.J. Brouwer, Mathematik, Wissenschaft und Sprache. Monatshf Math.-Phys. 36, 153–164.

    Google Scholar 

  8. L.EJ. Brouwer, Volition, Knowledge, Speech. (Dutch) Euclides 9, 177–193.

    Google Scholar 

  9. L.E.J. Brouwer, Consciousness, Philosophy and Mathematics. In: E.W. Beth, H.J. Pos, H.J.A. Holak (eds.) Proc. 10th Intern. Congress Philosophy. North-Holland Publ. Co., Amsterdam, 1235–1249.

    Google Scholar 

  10. L.E.J. Brouwer, Collected Works. I (ed. A. Heyting) North-Holland Publ. Co., Amsterdam.

    Google Scholar 

  11. D. Bridges, F. Richman, Varieties of Constructive Mathematics. Cambridge University Press, Cambridge.

    Google Scholar 

  12. Th. Coquand and G. Huet, The Calculus of Constructions. Information and Computation 76, 95–120.

    Google Scholar 

  13. D. van Dalen, The use of Kripke’s schema as a reduction principle. Journ. Symb. Logic. 42, 238–240.

    Google Scholar 

  14. D. van Dalen, An interpretation of intuitionistic analysis. Ann. Math. Logic 13, 1–43.

    Google Scholar 

  15. D. van Dalen, The continuum and first-order intuitionistic logic. Journ. Symb. Logic 57, 1417–1424.

    Google Scholar 

  16. M.A.E. Dummett, Elements of Intuitionism Oxford University Press, Oxford.

    Google Scholar 

  17. M. Dummett, The Philosophical basis of Intuitionism. In `H.E. Rose, J.C. Shepherson (eds.) Logic Colloquum-1973 Bristol’. North-Holland, Amsterdam, 5–40.

    Google Scholar 

  18. A.S. Esenin-Volpin, Le programme ultra-intuitioniste des fondements des mathématiques. In: Infinitistic Methods,Warsaw, 201–223.

    Google Scholar 

  19. J.-Y. Girard, Y. Lafont, P. Taylor, Proofs and Types. Cambridge University Press, Cambridge.

    Google Scholar 

  20. G.F.C. Griss, Negationless Mathematics. NederlandseAk. van Wetenschappen. Verh. TweedeAfd. Nat. 53, 261–268.

    Google Scholar 

  21. L.A. Harrington, M.D. Morley, A. Scedrov, S.G. Simpson (eds.), Harvey Friedman’s Research on the Foundations of Mathematics. North-Holland Publ. Co., Amsterdam.

    Google Scholar 

  22. W.A. Howard, The formulae as types notion of construction. In: J.P.Seldin, J.R.Hindley (eds.) To H.B. Curry: Essays on Combinatory Logic, Lambda calculus and Formalism Academic Press, New York, 480–490.

    Google Scholar 

  23. A. Heyting, Mathematische Grundlagen forschung, Intuitionismus, Beweistheorie. Springer Verlag, Berlin.

    Google Scholar 

  24. A. Heyting, Blick von der intuitionistische Waite. Dialectica 12, 332–345.

    Google Scholar 

  25. A. Heyting, After thirty years. In [42], 194–197.

    Google Scholar 

  26. J.M.E. Hyland, The effective topos. In [45], 165–216.

    Google Scholar 

  27. J.M.E. Hyland, A small complete category. Ann. of Pure and Appl. Logic,40, 135–166.

    Google Scholar 

  28. S.C. Kleene, R. Vesley, The Foundations of Intuitionistic Mathematics. North-Holland Pub. Co., Amsterdam.

    Google Scholar 

  29. S.C. Kleene, Realizability: a retrospective survey. In [38], 95–112.

    Google Scholar 

  30. G. Kreisel, On the interpretation of non-finitist proofs II. Journ. Symb. Logic 17, 43–48.

    Google Scholar 

  31. G. Kreisel, A remark on free choice sequences and the topological completeness proofs. Journ. Symb. Logic 23, 369–388.

    Google Scholar 

  32. G. Kreisel, Foundations of intuitionistic logic. In [42], 198–210.

    Google Scholar 

  33. G. Kreisel, A. Maclntyre, Constructive Logic versus Algebraization I. In [45], 217–260.

    Google Scholar 

  34. B.A. Kushner, Lectures on constructive mathematical analysis. AMS, Providence.

    Google Scholar 

  35. J. Lambek, Ph. Scott, Introduction to Higher-Order Categorical Logic. Cambridge University Press, Cambridge.

    Google Scholar 

  36. H. Luckhardt, Herbrand-Analysenzweier Beweise des Satzes von Roth: Polynomiale Anzahlschranken.Journ. Symb. Logic 54, 234–263.

    Google Scholar 

  37. P. Martin-Löf, Intuitionistic Type Theory. Bibliopolis, Napoli.

    Google Scholar 

  38. A. Mathias, H. Rogers (eds.), Cambridge Summer School in Mathematical Logic. Springer Verlag, Berlin.

    Google Scholar 

  39. D. McCarty, Realizability and Recursive Mathematics. Diss., Pittsburgh.

    Google Scholar 

  40. R. Mines, F, Richman, W. Ruitenburg,A Course in Constructive Algebra. Springer Verlag, Berlin.

    Google Scholar 

  41. J. Moschovakis, A topological interpretation of second-order intuitionistic arithmetic. Comp. Math., 26, 261–275.

    Google Scholar 

  42. E.Nagel, P. Suppes, A. Tarski (eds.), Logic, Methodology and Philosophy of Science: Proceedings of the 1960 International Congress. Stanford University Press, Stanford.

    Google Scholar 

  43. D. Prawitz, Meanings and Proofs: On the conflict between classical and intuitionistic logic. Theoria, 43, 2–40.

    Google Scholar 

  44. A.S. Troelstra, Notes on second-order arithmetic. In [38], 171–205.

    Google Scholar 

  45. A.S. Troelstra, D. van Dalen, The L.EJ. Brouwer Centenary Symposium. North-Holland Publ. Co., Amsterdam.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

van Dalen, D. (1995). Why Constructive Mathematics?. In: Depauli-Schimanovich, W., Köhler, E., Stadler, F. (eds) The Foundational Debate. Vienna Circle Institute Yearbook [1995], vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3327-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3327-4_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4617-8

  • Online ISBN: 978-94-017-3327-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics