Skip to main content

Part of the book series: Developments in environmental biology of fishes ((DEBF,volume 20))

Synopsis

Elasmobranchs possess a multiplicity of mechanisms controlling posture and short distance orientation. Visual—vestibular contributions to posture and locomotion are well documented. So too, are the contributions of vision, olfaction and the octavolateralis senses to short distance orientation, particularly orientation to specific environmental stimuli such as those generated by prey. Less well understood are the mechanisms guiding orientation over longer distances. Anecdotal and systematic observations of behaviour show tidal, daily, repeat long distance, and even seasonal movement patterns. True navigation has not been demonstrated in elasmobranchs and the sensory mechanisms underlying the above movement patterns remain largely speculative. However, they are likely to include responses to water currents, and physical parameters such as temperature, pressure, and the geomagnetic field. Of particular interest in elasmobranchs is that geomagnetic orientation could be mediated directly via a magnetite based sensory system, or indirectly via the electrosensory system. Systematic studies of movement patterns and experimental studies of the underlying mechanisms of orientation are required to gain an increased understanding of orientation and navigation in this intriguing group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  • Able, K.P. 1996. Large scale navigation. J. Exp. Biol. 199: 1–2. Barkley, R.A., W.H. Neill and R.M. Gooding. 1978. Skipjacktuna

    Google Scholar 

  • Katsuwonus pelamis,habitat based on temperature and oxygen requirements. U.S. Fish. Bull. 76: 653–662.

    Google Scholar 

  • Bone, Q. 1988. Muscles and locomotion. pp. 99–142. In: T.J. Shuttleworth (ed.) Physiology of Elasmobranch Fishes, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Carey, F.G. and J.V. Scharold. 1990. Movements of blue sharks (Prionace glauca) in depth and course. Mar. Biol. 106: 329–342.

    Google Scholar 

  • Castro, J.I. 1993. The shark nursery of Bulls Bay, South Carolina, with a review of the shark nurseries of the southeastern coast of the United States. Env. Biol. Fish. 38: 37–48.

    Google Scholar 

  • De Jong, H.A.A., E.N.P.M. Sondag, A. Kuipers and W.J. Oosterveld. 1996. Swimming behavior of fish during short periods of weightlessness. Aviation Space and Environmental Medicine 67: 463–466.

    Google Scholar 

  • Dingle, H. 1996. Migration, the biology of life on the move. Oxford University Press, New York. 474 pp.

    Google Scholar 

  • Diving, K.B., B.H. Westerberg and P.B. Johnsen. 1985. Role of olfaction in the behavioural and neuronal responses of the Atlantic salmon, Salmo salar, to hydrographie stratification. Can. J. Fish. Aquat. Sci. 542: 1658–1667.

    Google Scholar 

  • Fraenkel, G.S. and D.L. Gunn. 1961. The orientation of animals, kineses, taxes and compass reactions. Dover Publications, New York. 376 pp.

    Google Scholar 

  • Griffin, D.R. 1952. Bird navigation. Biol. Rev. Camb. Philos. Soc. 27: 359–400.

    Google Scholar 

  • Groen, J.J., O. Lowenstein and A.J.H. Vendrick. 1952. The mechanical analysis of the responses from the end-organs of the horizontal semicircular canal in the isolated elasmobranch labyrinth. J. Physiol. 117: 54–62.

    Google Scholar 

  • Gruber, S.H., D.R. Nelson and J.F. Morrissey. 1988. Patterns of activity and space utilization of lemon sharks Negaprion brevirostris in a shallow Bahamian lagoon. Bull. Mar. Sci. 43: 61–76.

    Google Scholar 

  • Harden Jones, F.R., G.P. Arnold, M. Greer-Walker and P. Scholes. 1979. Selective tidal stream transport and the migration of plaice (Pleuronectes platessa L.) in the southern North Sea. J. Conseil Internat. l’Exploration de la Mer 38: 331–337.

    Article  Google Scholar 

  • Hartmann, R. and R. Klinke. 1980. Discharge properties of afferent fibres of the goldfish semicircular canal with high frequency stimulation. Pflugers Arch. 388: 111–121.

    Article  PubMed  CAS  Google Scholar 

  • Hines, A.H., R.B. Whitlatch, S.F. Thrush, J.E. Hewitt, V.J. Cummings, P.K. Dayton and R. Legendre. 1997. Nonlinear foraging response of a large marine predator to benthic prey: eagle ray pits and bivalves in a New Zealand sandflat. J. Exp. Mar. Biol. Ecol. 216: 191–210.

    Google Scholar 

  • Hodgson, E.S. and R.F. Matthewson. 1978. Electrophysiological studies of chemoreception in elasmobranchs. pp. 227–267. In: E.S. Hodgson and R.F. Matthewson (ed.) Sensory Biology of Sharks, Skates, and Rays, Office of Naval Research, Department of the Navy, Arlington.

    Google Scholar 

  • Holland, K.N., B.M. Wetherbee, J.D. Peterson and C.G. Lowe. 1993. Movements and distribution of hammerhead shark pups on their natal grounds. Copeia 1993: 495–502.

    Google Scholar 

  • Johnson, R.H. and D.R. Nelson. 1978. Copulation and possible olfaction-mediated pair formation in two species of carcharhinid sharks. Copeia 1978: 539–542.

    Google Scholar 

  • Kalmijn, A.J. 1982. Electric and magnetic field detection in elasmobranch fishes. Science 218: 916–918.

    Article  PubMed  CAS  Google Scholar 

  • Kalmijn, A.J. 1984. Theory of electromagnetic orientation: a further analysis. pp. 525–560. In: A. Bolis, R.D. Keynes and S.H.P. Madrell (ed.) Comparative Physiology of Sensory Systems, Cambridge University Press, Cambridge.

    Google Scholar 

  • Kalmijn, A.J. 1988. Detection of weak electric fields. pp. 151–186. In: J. Atema, R.R. Fay, A.N. Popper and W.N. Tavolga (ed.) Sensory Biology of Aquatic Animals, Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Kalmijn, A.J. 1997. Electric and near-field acoustic detection, a comparative study. Acta Physiol. Scand. 161 (Suppl 638): 25–38.

    Google Scholar 

  • Kleerekoper, H. 1978. Chemoreception and its interaction with flow and light perception in the locomotion and orientation of some elasmobranchs. pp. 269–329. In: E.S. Hodgson and R.F. Matthewson (ed.) Sensory Biology of Sharks, Skates, and Rays, Office of Naval Research, Department of the Navy, Arlington.

    Google Scholar 

  • Klimley, A.P. 1993. Highly directional swimming by scalloped hammerhead sharks, Sphyrna lewini, and subsurface irradiance, temperature, bathymetry, and geomagnetic field. Mar. Biol. 117: 1–22.

    Google Scholar 

  • Klimley, A.P. and D.R. Nelson. 1984. Diel movement of patterns of the scalloped hammerhead shark (Sphyrna lewini) in relation to El Bajo Espiritu Santo (Mexico): a refuging central-position social system. Behay. Ecol. Sociobiol. 15: 45–54.

    Google Scholar 

  • Lohmann, K.J. and C.M.F. Lohmann. 1996. Orientation and open-sea navigation in sea turtles. J. Exp. Biol. 199: 73–81.

    Google Scholar 

  • Lowenstein, O. and A. Sand. 1936. The mechanism of the semicircular canal: a study of responses of single fibre preparations to angular accelerations and to rotation at constant speed. Proc. R. Soc. Lond. B 129: 256–275.

    Google Scholar 

  • Maruska, K.P. 2001. Morphology of the mechanosensory lateral line system in elasmobranch fishes: ecological and behavioral considerations. Env. Biol. Fish. 60: 47–76 (this volume).

    Google Scholar 

  • Maruska, K.P. and T. Tricas. 1998. Morphology of the mechanosensory lateral line system in the Atlantic stingray, Dasyatis sabina: the mechanotactile hypothesis. J. Morph. 238: 1–22.

    Article  Google Scholar 

  • Montgomery, J.C. 1984. Frequency response characteristics of primary and secondary neurons in the electrosensory system of the thornback ray. Comp. Biochem. Physiol. 79A: 189–195.

    Google Scholar 

  • Montgomery, J.C. 1988. Sensory physiology. pp. 79–98. In: T.J. Shuttleworth (ed.) Physiology of Elasmobranch Fishes, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Montgomery, J.C., C.F. Baker and A.G. Carton. 1997. The lateral line can mediate rheotaxis in fish. Nature 389: 960–963.

    Article  CAS  Google Scholar 

  • Montgomery, J.C. and P. Cotton. 1984. Projection of secondary vestibular neurons to the abducens nucleus in the carpet shark Cephaloscyllium isabella. Brain Behay. Evol. 27: 41–47.

    Google Scholar 

  • Morrissey, J.F. and S.H. Gruber. 1993. Home range of juvenile lemon sharks Negaprion brevirostris. Copeia 1993: 425–434.

    Article  Google Scholar 

  • Myrberg, A.A., Jr. 2001. The acoustical biology of elasmobranchs. Env. Biol. Fish. 60: 31–45 (this volume).

    Google Scholar 

  • Nakano, H. and K. Nagasawa. 1996. Distribution of pelagic elasmobranchs caught by salmon research gillnets in the North Pacific. Fisheries Sci. 62: 860–865.

    CAS  Google Scholar 

  • Nelson, D.R., J.N. Mckibben, W.R. Strong Jr., C.G. Lowe, J.A. Sisneros, D.M. Schroeder and R.J. Lavenberg. 1997. An acoustic tracking of a megamouth shark, Megachasma pelagios: a crepuscular vertical migrator. Env. Biol. Fish. 49: 389–399.

    Google Scholar 

  • O’Gower, A.K. 1995. Speculations on a spatial memory for the Port Jackson shark (Heterodontus portusjacksoni) (Meyer) (Heterodontidae). Mar. Freshwater Res. 46: 861–871.

    Google Scholar 

  • Parker, G.H. 1914. The directive influence of the sense of smell in the dogfish. Bull. U.S. Bur. Fish. 33: 61–68.

    Google Scholar 

  • Paulin, M.G. 1995. Electroreception and the compass sense of sharks. J. Theor. Biol. 174: 325–339.

    Google Scholar 

  • Puzdrowski, R.L. and R.B. Leonard. 1994. Vestibulo-ocular connections in an elasmobranch fish the Atlantic stingray, Dasyatis sabina. J. Comp. Neurol. 339: 587–597.

    Google Scholar 

  • Roberts, B.L. 1978. Mechanoreceptors and the behavior of elasmobranch fishes with special reference to the acoustico-lateralis system. pp. 331–390. In: E.S. Hodgson and R.F. Mathewson (ed.) Sensory Biology of Sharks, Skates and Rays, Office of Naval Research, Department of the Navy, Arlington.

    Google Scholar 

  • Roberts, B.L. 1988. The central nervous system. pp. 99–142. In: T.J. Shuttleworth (ed.) Physiology of Elasmobranch Fishes, Springer-Verlag, Berlin.

    Google Scholar 

  • Sciarrotta, T.C. and D.R. Nelson. 1977. Diel behavior of the blue shark (Prionace glauca) near Santa Catalina Island, California. U.S. Fish. Bull. 75: 519–528.

    Google Scholar 

  • Sims, D.W. and V.A. Quayle. 1998. Selective foraging behaviour of basking sharks on zooplankton in a small-scale front. Nature 393: 460–464.

    Article  CAS  Google Scholar 

  • Taylor, J.G. 1996. Seasonal occurrence, distribution and movements of the whale shark, Rhincodon typus, at Ningaloo Reef, Western Australia. Mar. Freshwater Res. 47: 637–642.

    Google Scholar 

  • Timerick, S.J.B. 1982. The response of the pectoral fin muscles of the dogfish (Scyliorhinus canicula) to stimulation of the labyrinth and long descending pathways. J. Physiol. ( Lond. ) 327: 64P.

    Google Scholar 

  • Tricas, T.C. 1982. Bioelectric-mediated predation by swell sharks Cephaloscyllium ventriosum. Copeia 1982: 948–952.

    Article  Google Scholar 

  • Tricas, T.C. 2001. The neuroecology of the elasmobranch electrosensory world: why peripheral morphology shapes behavior. Env. Biol. Fish. 60: 77–92 (this volume).

    Google Scholar 

  • Tricas, T.C., S.W. Michael and J.A. Sisneros. 1995. Electrosensory optimization to conspecific phasic signals for mating. Neurosci. Lett. 202: 129–132.

    Google Scholar 

  • Ullen, F., T.G. Deliagina, G.N. Orlovsky and S. Grillner. 1995. Spatial orientation in the lamprey. J. Exp. Biol. 198: 675–681.

    Google Scholar 

  • Walker, M.M. and M.E. Bitterman. 1989. Attached magnets disrupt magnetic field discrimination by honeybees. J. Exp. Biol. 141: 447–451.

    Google Scholar 

  • Walker, M.M., C.E. Diebel, C.V. Haugh, P.M. Pankhurst, J.C. Montgomery and C.R. Green. 1997. Structure and function of the vertebrate magnetic sense. Nature 390: 371–376.

    Article  PubMed  CAS  Google Scholar 

  • Wehner, R. 1996. Preface to volume Navigation Migration and Homing. J. Exp. Biol. 199: I.

    Google Scholar 

  • Wiltschko, W. and R. Wiltschko. 1995. Magnetic orientation in animals. Springer-Verlag, Berlin. 297 pp.

    Book  Google Scholar 

  • Wiltschko, W. and R. Wiltschko. 1996. Magnetic orientation in birds. J. Exp. Biol. 199: 29–38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Timothy C. Tricas Samuel H. Gruber

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Montgomery, J.C., Walker, M.M. (2001). Orientation and navigation in elasmobranchs: which way forward?. In: Tricas, T.C., Gruber, S.H. (eds) The behavior and sensory biology of elasmobranch fishes: an anthology in memory of Donald Richard Nelson. Developments in environmental biology of fishes, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3245-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3245-1_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5655-9

  • Online ISBN: 978-94-017-3245-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics