The Construction of Mathematics within a Deductive Framework

  • Árpád Szabó
Part of the Synthese Historical Library book series (SYHL, volume 17)


At the end of Part 2 we discussed the connections which various scholars have tried to establish between Greek mathematics and pre-Hellenic science. As we saw, some of them even maintained that Greek science was built upon the achievements of the Babylonians,1 and that it could be regarded as a direct continuation of its more ancient, Oriental counterpart.


Indirect Proof Visual Argument GREEK Mathematics Deductive Mathematic Dialectical Debate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 2.
    K. von Fritz, ‘Die ?wain der griechischen Mathematik’. Archivfür Begriffsgeschichte (Bonn), Vol. 1 (1955) 13–103.Google Scholar
  2. 4.
    O. Becker, ‘Frühgriechische Mathematik and Musiklehre’, Archiv für Musikwissenschaft (Trossingen), Vol. 14 (1957), 157.Google Scholar
  3. 5.
    It should be mentioned that the so-called problems do not always conclude with these words. As Proclus remarks in his commentary (p. 81, 5–22 in Friedlein’s edition): “… there is a distinction between a problem and a theorem. That Euclid’s Elements contains both problems and theorems will be evident from the individual propositions and from his practice of placing at the end of his demonstrations sometimes `This is what was to be done’ (57tee &bet notijaat) and at other times `This is what was to be proved’ (ônee&Set Seiat). The latter phrase is the mark of a theorem…”. (The translation is by Glenn R. Morrow, Proclus — A Commentary on the First Book of Euclid’s Elements, Princeton 1970.) Nonetheless the term Seieat does occur in the proof of some problems. It is used in such phrases as atooxelaim ßj,ttiv Seilat, b’rt xxA. (Our task is to show that…).Google Scholar
  4. 6.
    Cf. A. Szabo, Deiknymi,als mathematischer Terminus für beweisen’, Maia N. S. 10 (1958), pp. 106–31.Google Scholar
  5. 11.
    K. Reidemeister, Das exacte Denken der Greichen, Hamburg 1949, p. 51.Google Scholar
  6. 12.
    O. Becker, `Die Lehre vom Geraden und Ungeraden in neunten Buch der Euklidischen Elemente’. (See Part 1, n. 75 above.)Google Scholar
  7. 13.
    Plato, The Republic, 525 ovSa,u?l àcroSexdpcvov éca Tl; avap doatà ~ ârtrà trcliya-ta éxovraç àoe8,u.ovç nooretvdµevoç StaAéyrlrat. Google Scholar
  8. 19.
    Thaer, Die Elemente von Eu.klid, Part 3, p. 73.Google Scholar
  9. 20.
    Procli Diadochi in Primum Euclidis Elementorum Librum Commentarii ed. G. Friedlein (Lipsiae 1873) 60.11: iv yecoµeTe6a éAci x caTov ô.îcoç ovx Éazcv... Google Scholar
  10. 22.
    H. Rademacher and O. Töplitz, Von Zahlen und Figuren, Berlin 1930, p. 258; cf. also O. Töplitz, Die Entwicklung der Infinitesimalrechnung, Berlin 1949, pp. 2–6.Google Scholar
  11. 24.
    One should keep in mind Fraenkel’s thoughtful remark (Abstract Set Theory, Amsterdam, 1953, p. 9): “As a matter of fact, the recent research in physics has in increasing measure convinced us that the exploration of nature cannot lead to either infinitely large or infinitely small magnitudes. The assumption of a finite extent of the physical space, as well as the assumption of an only finite divisibility of matter and energy (so that the smallest particles of matter and energy are finite), completely harmonize with experience. It thus seems that the external world can afford us nothing but finite sets.”Google Scholar
  12. 25.
    O. Becker, `Die Lehre vom Geraden und Ungeraden…’ (see n. 15 above).Google Scholar
  13. 29.
    Prior Analytics, I.23.41a26 and I.44.50a37.Google Scholar
  14. 31.
    In the Theaetetus (see 162e) Socrates deplores the use of vague arguments based on plausibility and probability to settle matters of importance and states that a mathematician “who argued from probabilities and likelihoods in geometry, would not be worth an ace”. He then goes on to give a vigorous proof by contradiction. From this I infer that the use of indirect proof was thought to be characteristic of mathematics in Plato’s time.Google Scholar
  15. 34.
    The Fragments of Aristotle (ed. V. Rose, Lipsiae 1886), fragment 65 (Diogenes Laertius 9.25): p)ai S’ ‘Aglanoré2nç e’v z;o copal-fi evgerijv aro v (sci1. Znvwva) ysvéa.9ai Scats crtxiiç xrA.Google Scholar
  16. 35.
    On this see my paper ‘Zur Verständnis der Eleaten’ mentioned in n. 33 above, pp. 247ff. Popper also observes that Eleatic philosophy originated in cosmogony (see pp. 18–20 of Problems in the Philosophy of Mathematics edited by I. Lakatos, Amsterdam 1967).Google Scholar
  17. 36.
    Page 75.6ff. in Friedlein’s edition of the commentary. The translation is by Glenn R. Morrow, op. cit., n. 5 above.Google Scholar
  18. 38.
    Revue des Études grecques 10 (1897), 14–8 (pp. 540–4 of Mémoires Scientifiques 2, 540–4).Google Scholar
  19. 39.
    ‘Sur l’authenticité des axiomes d’Euclide’, Bulletin des Sciences mathématiques, 2nd series 8 (1884), 162–75 (reprinted in Mémoires Scientifiques 2, 48–63).Google Scholar
  20. 40.
    Proclus, op. cit. (n. 20 above), p. 181. 16–24.Google Scholar
  21. 41.
    K. von Fritz, `Die doxal in der griechischen Mathematik’, Archiv für Begriff sgeschichte, Bonn, 1 (1955), 101.Google Scholar
  22. 42.
    See, for example, p. 81. 26 of Proclus, op. cit. (n. 20 above).Google Scholar
  23. 43.
    Ibid., p. 76. 4–6 and p. 178. 1–2.Google Scholar
  24. 45.
    Proclus, op. cit. (n. 20 above), p. 77. 2: noad aç 8s at ndvra TavJra (seil. Tdç dexdç Tüç ertsTMzrlç) xatovaty vro1.9aOstç.Google Scholar
  25. 46.
    See, for example, Charmides 160d; see also 159c.Google Scholar
  26. 47.
    The Republic VI.510 c—d; translation by A. D. Lindsay (Everyman’s Library, 1950).Google Scholar
  27. 48.
    Archimedes, Opera omnia, ed. J. L. Heiberg, Lipsiae 1910, vol. 1, pp. 248 and 252.Google Scholar
  28. 49.
    K. von Fritz, op. cit. (n. 41 above), p. 57.Google Scholar
  29. 50.
    Autolyci, De sphaera quae movetur liber. De ortibus et occasibus libri duo, ed. F. Hultsch, Lipsiae 1885, see the index under &got: “Inter definitiones et axiomata ab Autolyco nulluni discrimen factum esse docet P. Tannery, etc.”Google Scholar
  30. 51.
    Tannery (Mémoires Scientifiques 2, 58), after quoting both of them in a French translation, goes on to say: Il est clair que cette seconde définition est, en réalité, un postulat, et nous apprenons ainsi qu’immédiatement avant Euclide, il n’était pas de règle de distinguer avec précision les définitions et les axiomes, que tout était ou au moins pouvait être rangé sous la même rubrique. Il y a là un fait considérable. 42 In Hultsch’s edition (see n. 50 above) the assumptions are entitled gent in both of Autolycus’ works. On both occasions, however, we find the words ‘add. Da’ (i.e. addidit Dasypodius) in his critical apparatus.Google Scholar
  31. 53.
    P. Tannery, Mémoires Scientifiques 2 58: “Il est parfaitement possible qu’Euclide n’ait nullement inscrit: aizs,uara en tête de ses postulats géométriques; mais en tout cas il les a nettement distingués des définitions précédentes en les commençant `?r a co’ (qu’il soit demandé).”Google Scholar
  32. 54.
    K. von Fritz, `Die dezal in der griechischen Mathematik’, Archiv für Begri ff sgeschichte (Bonn) 1 (1955), 57.Google Scholar
  33. 56.
    Posterior Analytics, I.3.72b5ff., and I.19–23.83b, 32–84ab.Google Scholar
  34. 57.
    Proclus, op. cit. (n. 20 above), p. 183. 13–4.Google Scholar
  35. 58.
    K. von Fritz, op. cit. (n. 54 above), pp. 64–5.Google Scholar
  36. 62.
    See, for example, the introduction to Heath’s translation of the Elements, `Die dgxat in der griechischen Mathematik’ by K. von Fritz (Archiv für Begriffsgeschichte, Vol. I, 1955) and Becker’s paper in Archiv für Begriffsgeschichte, 4 (1959), 210ff.Google Scholar
  37. 63.
    von Fritz, `Die dexat in der griechischen Mathematik’, Archiv für Begriffsgeschichte 1 (1955), 25.Google Scholar
  38. 65.
    Posterior Analytics, I.10.76b; cf. K. von Fritz, op. cit. (n. 63 above), pp. 54–5.Google Scholar
  39. 66.
    P. Tannery, Mémoires Scientifiques 2 pp. 48–9.Google Scholar
  40. 67.
    Ibid., p. 55; cf. A. M. Frenkian, Le postulat chez Euclid et chez les Modernes, Paris 1940, p. 14.Google Scholar
  41. 68.
    Proclus, 66. 7–8 (in Friedlein’s edition).Google Scholar
  42. 71.
    Cf. O. Becker, ‘Die Archai in der griechischen Mathematik’, Archiv für Begriffsgeschichte 4 (1959), 210ff. The translation of the passage quoted from the Meno is by W. K. C. Guthrie.Google Scholar
  43. 72.
    Cf. P. Tannery, ‘Mémoires Scientifiques’ 1, 39–45 and 2 400–6; cf. also T. L. Heath, A History of Greek Mathematics, Oxford 1921, 1, p. 300.Google Scholar
  44. 73.
    Proclus (Friedlein’s edition) 75. 6–14.Google Scholar
  45. 74.
    In this book `dialectic’ means Plato’s dcaAexrcx1) ré v7l Google Scholar
  46. 75.
    See, for example, Plato’s Theaetetus 155a—b.Google Scholar
  47. 76.
    Opera omnia, ed. Heiberg, Lipsiae 1910-15, II, p. 318. Archimedes uses the expressions v7toxeid,co and vuort$éye$a as stylistic variants of one another (see n. 48). In Greek it can be said of a v7td$eatç that it vndxstrat. Google Scholar
  48. 77.
    Euclid’s list of postulates begins with the word ?lrîa8w (“let it be required that…”); it is required of the other participant in the argument that he accept the statements which follow (the postulates) as a basis for the discussion.Google Scholar
  49. 78.
    Not only does Plato treat the expressions éyo2dy77ya and é ro’ eatç as synonyms, he sometimes uses the word in a similar sense. See, for example, Cratylus 436d.Google Scholar
  50. 72.
    See, for example, Phaedo 100a.Google Scholar
  51. 82.
    For example, the expression rà avyßaivovra in Meno 87a.Google Scholar
  52. 83.
    The expressions retu uo-va,rà geijç, etc. could, of course, also be used as mathematical tern-is. See 2. Markoviè, `Les mathématiques chez Platon et Aristote’, Bulletin International de l’Académie Yougoslave des Sciences et des Beaux Arts, Classes des Sciences mathématiques et naturelles, 32 (1939) 1–21.Google Scholar
  53. 84.
    The initial propositions of a dialectical debate were, in fact, sometimes chosen in a completely arbitrary manner; see Aristotle’s Topics (VIII.1.155b29 and VIII.3.159a3ff). In the passages in question, Aristotle refers to these propositions as d4ccb,uara, but he is clearly using this word as a synonym for 1511o“ evtç (cf. K. von Fritz, op. cit. (n. 63 above), p. 31).Google Scholar
  54. 85.
    K. von Fritz, op. cit. (n. 63 above), p. 20. See also the article `Syllogistik’ by E. Kapp in RE (Pauly—Wissowa, Realencyclopädie der Klassischen Altertumswissenschaft, IVA1048, 1058–9) and E. Kapp, Greek Foundation of Traditional Logic (Columbia University Press, New York 1942).Google Scholar
  55. 86.
    Republic IV.437a. The translation is by A. D. Lindsay.Google Scholar
  56. 87.
    Cratylus 436d. The translation is by Jowett.Google Scholar
  57. 88.
    The verb 15 cdxetsat is discussed in n. 76 above.Google Scholar
  58. 89.
    Phaedo 107b. The translation is by H. N. Fowler (London 1953)Google Scholar
  59. 92.
    Ibid. 155a—b. The translation is by F. M. Cornford (London 1935).Google Scholar
  60. 93.
    Markovic, op. cit. (n. 83 above), p. 2.Google Scholar
  61. 94.
    In the Theaetetus (189e-190) Plato describes thinking as a kind of conversation which the soul holds with itself.Google Scholar
  62. 95.
    Phaedo 100a. The translation is by Fowler.Google Scholar
  63. 96.
    The Latin word for this is consequi. Google Scholar
  64. 99.
    Some propositions (for example, Elements I.6 and IX.2O, 30, 33, and 34) conclude with the words &nee dronov or &tee otix vndxetrat. Both these phrases are nothing more than stylistic variants of the one mentioned in the text, and they are also used by Plato in his discussions of dialectic.Google Scholar
  65. 100.
    In mathematical contexts, Plato refers to `conclusive proof’ as dutdSethhç xai dvcsyxn; see Theaetetus 162e.Google Scholar
  66. 101.
    Becker (Archiv far Begriffsgeschichte 4 (1958), 212) has pointed out that a similar kind of argument is to be found in Phaedo 1O1d 4–5.Google Scholar
  67. 105.
    The verb evµßalvetr was used in connection with statements which followed necessarily from some premises (whether these premises were true or false). This is the sense in which Aristotle uses this word (Physics Z9.239b30) when he discusses Zeno’s argument about the flying arrow; he concedes that the conclusion (`the flying arrow is at rest’) follows from the premise of the argument, but asserts that the premise is false.Google Scholar
  68. 106.
    It seems to me that the principle of non-contradiction plays a major role in Plato’s dialectic. Socrates is always portrayed as trying to find out whether the statements under discussion are consistent with some hypothesis which has already been accepted as true. If the hypothesis is a `strong’ one, all statements which contradict it are rejected as false (see Phaedo 100ff, especially 101a). In some cases, however, the hypothesis itself is a questionable assertion which has only been granted tentative acceptance, and it may actually be rejected, if it is found to contradict some other statement.Google Scholar
  69. 107.
    B L. van der Waerden, `Die Arithmetik der Pythagoreer’, Math. Ann. 120 (1947–49), 127–53.Google Scholar
  70. 109.
    F. Radio, Der Bericht des Simplicius über die Quadraturen des Antiphon and des Hippokrates (Leipzig 1907); P. Tannery, Mémoires scientifiques 1, pp. 347–9; 0. Becker, Quellen and Studien…’B, 3 (1936), pp. 427–9.Google Scholar
  71. 112.
    Cf. O. Becker, Archiv für Begri$sgeschichte 4 (1958), 218ff.Google Scholar
  72. 113.
    O. Becker, Grundlagen der Mathematik in geschichtlicher Entwicklung, Freiburg—Munich 1954, p. 38.Google Scholar
  73. 114.
    See O. Becker, Quellen und Studien… B, 3 (1936) 533.Google Scholar
  74. 115.
    Ibid., p. 544, n. 11; Aristotle, Prior Analytics I.23. 41a26 and I.4450a37.Google Scholar
  75. 117.
    Simplicius, Commentary on the Physics of Aristotle 134.2 (the passage is concerned with Physics A3.187a1).Google Scholar
  76. 118.
    Aristotelis Fragm. (ed. V. Rose), Lipsiae 1886, fragment 65.Google Scholar
  77. 119.
    See my paper `Eleatica’ referred to in n. 33 above.Google Scholar
  78. 120.
    A. Rey, La Jeunesse de la science grecque, Paris 1933, p. 202.Google Scholar
  79. 121.
    See the papers of mine listed in n. 33.Google Scholar
  80. 122.
    Cf. K. Reinhardt, Parmenides und die Geschichte der griechischen Philosophie and my paper ‘Zum Verständnis der Eleaten’ (see n. 33 above).Google Scholar
  81. 123.
    Hippolytus, Ref. I.7. 3 (Dies and Kranz, Fragmente I8.13 Anaximenes A7).Google Scholar
  82. 125.
    This is not the place to discuss whether it is possible to acquire knowledge without the aid of the senses, but see my paper ‘Zur Geschichte der Dialektik des Denkens’ (referred to in n. 33 above).Google Scholar
  83. 126.
    Diels and Kranz, Fragmente, I.28 Parmenides, b7; the translation is by Kathleen Freeman (Ancilla to the Pre-Socratic Philosophers, Oxford 1948). See also the fragment of Melissus, Diels and Kranz, Fragmente, I.30b8.Google Scholar
  84. 127.
    Cf. Phaedo 78d: avrd rd iaov, avrd rd xaAdv,avrd ixaarov ô gutty rd ôv µi7 afire µeraßati7v xai t)vrevovv iv&xerae... dei adrwv ixaarov ô tara... cbaavrcoç xard ravrd fret xai ot36snore oMSagr ovSa,aacïiç d7ilotwaav ovôs,aiav fvôéxerac. Google Scholar
  85. 128.
    Plato, Parmenides 135e. The translation is adapted from one by F. M. Cornford (see n. 134 below).Google Scholar
  86. 130.
    See my paper `Zur Geschichte der griechischen Dialektik’ (referred to in n. 33 above).Google Scholar
  87. 131.
    Proelus (ed. Friedlcin), 66.7f.Google Scholar
  88. 134.
    Parmenides 135b—c: ei yi rcç d~… av’ µi) éaaec eidrl rwv 6vrcov elvac...,arillé rc doaeirai eldoç ivôç ixccarov, ovâi ôroc riéycac rr)v dcdvocar é ec, lc3) éwv idéav ram övrwv éxâarov rniv avrijv dei rival, xai olJrwç Tip roi dca îéyeat5kac dvvalecv yravrâacaac dcaTt9eoei. — The translation is taken (with some minor alternations) from the one by F. M. Cornford (Plato and Parmenides, London 1939).Google Scholar
  89. 139.
    See B. L. van der Waerden, Math. Ann. 120 (1947/49), 139.Google Scholar
  90. 141.
    Republic VII.525: 3] neel ri b pcib lalç. Google Scholar
  91. 142.
    Republic VII.525d-526a. The translation is by A. D. Lindsay.Google Scholar
  92. 143.
    OIOY vµeiç d conte… We shall have more to say about the verb detdco when we come to discuss the communes animi conceptiones.Google Scholar
  93. 144.
    P. 18 in Hiller’s edition (Lipsiae 1878); the passage is quoted by van der Waerden in Science Awakening, p. 115.Google Scholar
  94. 146.
    Diels and Kranz, Fragmente I.28 Parmenides B fragment 8.22ff. The translation is by Kathleen Freeman.Google Scholar
  95. 147.
    Parmenides also proved his thesis (that the ôv existed) by refuting its negation. See also O. Gigon, Der Ursprung der griechischen Philosophie, Basel 1945, p. 250.Google Scholar
  96. 150.
    Pour l’histoire de la science hellène, Paris 1 887, pp. 249–50: “Parménide avait écrit son poème dans un milieu où, comme penseurs, les pythagoriciens seuls étaient enhonneur; il avait reproduit plus ou moins exactement leur enseigne - ment exotérique… mais en tout cas, il avait nié la vérité de leur thèse dualiste. — Les attaques contre son poème durent donc venir surtout de pythagoriciens, et c’est eux que Zénon prit à partie.” and pp. 248–9: “Zénon n’a nullement nié le mouvement… il a seulement affirmé son incompatibilité avec la croyance à la pluralité.”Google Scholar
  97. 151.
    For references, see C. Thaer, ‘Antike Mathematik 1906–1930’, in Bursians Jahresberichte über die Fortschritte der klass. Altertumswissenschaft 283 (1943), 44ff. For an opposing view of Zeno’s arguments, see B. L. van der Waerden, Math. Ann. 117 (1940), 143ff.Google Scholar
  98. 152.
    G. Vlastos, in his review (Gnomon 1953) of a book by J. E. Raven (Pythagoreans and Eleatics. An account of the interaction between the two opposed schools during the fifth and early fourth centuries B.C., Cambridge 1948), quotes the following remark made by W. A. Heidel (`The Pythagoreans and Greek Mathematics’, Am. J. Ph. 61 (1940) 21): “there is not, so far-as I know, a single hint in our sources that the Greeks were aware of the purpose of Zeno to criticize the fundamental doctrines of the Pythagoreans”.Google Scholar
  99. 153.
    See W. Capelle, Die Vorsokratiker, I eipzig 1935, pp. 173ff: `Zenon Beweise gegen die Annahme der Vielheit der Dinge’.Google Scholar
  100. 158.
    B. L. van der Waerden, Erwachende Wissenschaft, p. 189.Google Scholar
  101. 161.
    Diele and Kranz, Fragmente, I.28b, fragment 8.22.Google Scholar
  102. 162.
    ‘De conoidibus et sphaeroidibus’, Opera Omnia (ed. Heiberg, Lipsiae 1910–15) I, pp. 248 and 252.Google Scholar
  103. 163.
    ‘De corporibus fluitantibus’, Opera (see n. 162 above), II 318.Google Scholar
  104. 164.
    ‘De planorum aequilibriis’, Opera (see n. 162 above), II 124.Google Scholar
  105. 166.
    Proclus, (Friedlein, Lipsiae 1873), 181.17ff.Google Scholar
  106. 166.
    Opera (see n. 162 above), II.126.Google Scholar
  107. 168.
    The passage which Proelus had in mind was obviously Posterior Analytics I.10.76b 27–34.Google Scholar
  108. 169.
    Proclus (ed. Friedlein), 76, 17ff. The translation is by Glenn R. Morrow (Princeton 1970).Google Scholar
  109. 170.
    K. von Fritz, op. cit. (n. 2 above), p. 42 where he refers top. 540 of Aristotle’s prior and posterior Analytics by D. Ross (Oxford 1949).Google Scholar
  110. 171.
    H. G. Zeuthen, `Die geometrische Konstruktion als Existenzbeweis’, Math. Ann. 47 (1896), pp. 222–8. In his Geschichte der Mathematik im Altertum und Mittelalter (Kopenhagen 1896), Zeuthen wrote (on p. 120) that, since the-problems of the ancients were in essence propositions about existence and their solutions were proofs of existence, the postulates were assertions about the existence of certain forms, whose acceptance was demanded without proof. For a different view, see A. Frajese, `Sur la signification des postulats euclidiens’. Archives Internationales d’Histoire des Sciences (1951) pp. 382–92, and La matematica nel mondo antico, Roma 1951, pp. 92–7.Google Scholar
  111. 172.
    O. Becker, Das Mathematische Denken der Antike (Göttingen 1957), p. 19.Google Scholar
  112. 173.
    P. Tannery, Mémoires scientifiques 2 48–63.Google Scholar
  113. 174.
    Cf. A. Frenkian, op. cit., p. 15 (n. 67 above), p. 15; see also C. Thaer, Die Elemente von Euclid, p. 22Google Scholar
  114. 175.
    T. L. Heath, A History of Greek Mathematics (Oxford 1921), Vol. 1, p. 375.Google Scholar
  115. 176.
    J. E. Hoffman, `Geschichte der Mathematik, Part 1’, Sammlung Göschen, (Berlin) 226 (1953), 32.Google Scholar
  116. 177.
    K. von Fritz, op. cit. (n. 2 above), p. 97.Google Scholar
  117. 178.
    Cf. O. Becker’s paper in Archiv für Begriffsgeschichte 4 (1959), 213.Google Scholar
  118. 180.
    O. Becker, Das mathematische Denken der Antike, pp. 19ff.Google Scholar
  119. 181.
    Proclus (ed. Friedlein) 283.7ff. The translation is by Glenn R. Morrow (Princeton 1970).Google Scholar
  120. 183.
    A. D. Steele, `Über die Rolle von Zirkel und Lineal in der griechischen Mathematik’. Quellen und Studien… B, 3 (1936), 287ff., 304.Google Scholar
  121. 184.
    B. L. van der Waerden, Erwachende Wissenschaft, pp. 213–4.Google Scholar
  122. 185.
    T. L. Heath, A History of Greek Mathematics (Oxford 1921) Vol 1, p. 175; cf. Frajese’s paper in Archimede 6 (1967), pp. 285–94.Google Scholar
  123. 186.
    Cf. J. E. Hofmann, `Geschichte der Mathematik’, Part 1, Sammlung Göschen (Berlin) 226 (1953), 32.Google Scholar
  124. 187.
    Proclus (ed. Friedlein), 185.8ff.Google Scholar
  125. 190.
    See, for example, Proclus (ed. Friedlein) 76.4ff. and 178.1ff.Google Scholar
  126. 192.
    Ibid., 76.6; 77.1; 178.2 et passim.Google Scholar
  127. 193.
    See Proclus (ed. Friedlein), pp. 193–4 (especially 194. 8–9).Google Scholar
  128. 194.
    See, for example, Metaphysics r3.1005a20.Google Scholar
  129. 195.
    Ibid., K4.1061b20; compare this passage with r3. 1005a19ff.Google Scholar
  130. 196.
    P. Tannery, Mémoires scientifique 2 60: “Ce terme d’frvoca n’est nullement de la langue philosophique de l’époque; on le chercherait vainement avec une signification technique dans l’oeuvre de Platon ou dans celle d’Aristote; il appartient aux stoiciens dont l’école commençait seulement au temps d’Euclide et dont il ne pouvait subir l’influence it Alexandrie.”Google Scholar
  131. 197.
    Ibid. 2, 56: “Quant aux notions communes, elles ne seraient pas de lui [Euclide]; il les aurait employées comme allant de soi ou comme supposées par les définitions; l’attention ne serait portée sur cette question qu’à l’époque d’Apollonius, qui essaya de démontrer ces propositions et reconnut leur liaison avec la définition de l’égalité et des opérations de l’addition et de la soustraction géométriques. Les éditeurs successifs d’Euclide auraient pris depuis lors l’habitude d’insérer un recueil plus ou moins complet de ces notions suivant le point de vue auquel ils se plaçaient mais la tradition serait restée longtemps assez flottante à cet égard.”Google Scholar
  132. 198.
    Ibid. 2, 62: “Pour le mot axiome, Aristote l’emploie à peu près dans le même sens que nous, et il nous apprend qu’il était en usage chez les mathématiciens, mais particulièrement pour désigner les notions communes. Il cite même comme exemple que, si on retranche des choses égales de choses égales, les restes sont égaux.”Google Scholar
  133. 199.
    Ibid., 2, 62–3: “Il est à remarquer, que les stoïciens changèrent complètement le sens du mot d icopa, et appelèrent de ce nom une proposition quelconque, vraie ou fausse; c’est là qu’il faut chercher la raison de l’adoption d’une autre désignation dans nos textes d’Euclide.”Google Scholar
  134. 200.
    Proclus (ed. Friedlein), 193, 15–7.Google Scholar
  135. 201.
    P. 152 in G. R. Morrow’s translation (see n. 5 above).Google Scholar
  136. 202.
    Proclus (ed. Friedlein), 182, 17ff; the translation is by Morrow (see n. 5 above).Google Scholar
  137. 203.
    For this meaning of the word dtdw, see the references (Xenophon, Cyr. 2.2.17 and An. 5.5.9; Pindar, Nem. 10.39, etc.) quoted in Pape’s distionary. 2°4K. von Fritz, op. cit. (n. 2 above), pp. 29f1.Google Scholar
  138. 207.
    For example, Herodotus 6.87; Plato, Menexenus 239e, etc.Google Scholar
  139. 209.
    See the entry under this word in Pape’s dictionary.Google Scholar
  140. 210.
    Cf. K. von Fritz, op. cit. (n. 2 above), p. 57 and P. Tannery, Mémoires Scientifiques 2 79.Google Scholar
  141. 212.
    Euclides: Elementa (ed. J. L. Heiberg, Lipsiae 1883–1916) I.10, and O. Becker, Grundlagen der Mathematik in geschichtlicher Entwicklung (Freiburg—Munich), p. 90.Google Scholar
  142. 213.
    Plato, Theaetetus 155a. The translation is taken (with one minor change) from F. M. Cornford, Plato’s Theory of Knowledge (London, 1935).Google Scholar
  143. 214.
    It was originally thought that Euclid’s axioms were valid only for geometry. See O. Becker, op. cit. (n. 212 above), p. 90.Google Scholar
  144. 216.
    O. Becker, Mathematische Existenz, Untersuchunger zur Logik und Ontologie mathematischer Phänomene (Halle 1927), p. 144. Becker refers there to Tannery (Revue Philosophique 20 (1885), 385) and Russel (The Principles of Mathematics (Cambridge 1903), Vol. I §331, p. 350 and §§340–1, pp. 358–60).Google Scholar
  145. 217.
    Elements, Book I, Communes animi conceptiones VIII: rd 6Rov roil tcéeov; µei4 - 6v éarcv. Google Scholar
  146. 218.
    For example, in De sphaera quae movetur liber, (ed. Hultsch), Lipsiae 1885, Proposition 3 reads: to - ri aea évriv 4 dH (a line segment) Tr AZ (another line segment), 4 s.?csueow rp pel ov, &ree évriv d8vvarov.Google Scholar
  147. 219.
    See, for example, Vol. I, p. 25 et passim.Google Scholar
  148. 220.
    Mémoires scientifiques 2 54.Google Scholar
  149. 221.
    Aristotle, Physics Z9.239b33.Google Scholar
  150. 222.
    Ibid., raw rival xe6vov tw SmArzaiço sôv ibyuovv. Google Scholar
  151. 223.
    Cf. J. Lachelier, Revue de Métaphysique et de Morale 18 (1910), pp. 345–55.Google Scholar
  152. 224.
    Simplicius, 1016ff., see also 1019.27. The passage and the diagram both appear in Diels and Kranz, Fragmente I.29, Zeno a28.Google Scholar
  153. 225.
    Archytas (in Boëtius, De institutione musica ed. G. Friedlein, Lipsiae 1867, p. 287) denotes the sum of two lengths, D and E, by DE. Google Scholar
  154. 226.
    Simplicius on Aristotle’s Physics 1019.32ff.Google Scholar
  155. 228.
    If we compare Physics Z9.239 and 2.223a21, it is apparent that Zeno thought not only of time as composed of infinitely many ‘vows’ (moments without durations) but also of space as composed of infinitely many pointsGoogle Scholar
  156. 229.
    It is worth recalling Frajese’s interpretation of Philebus 25a—b (‘Platon e la matematica nel mondo antico’): “Si pub seguire, almeno da un importante punto di vista, lo sviluppo della matematica greca come il succedersi di episodi di una lotta contro l’infinito In questo passo Platon riafferma the la matematica è il dominio del finito.”Google Scholar
  157. 230.
    25ff. (in Friedlein’s edition).Google Scholar
  158. 231.
    See Euclides: Elementa (ed. I. L. Heiberg, Lipsiae 1883–1916), Vol. 1, p. 91.Google Scholar
  159. 232.
    P. Tannery, Mémoires scientifiques 2, 53.Google Scholar
  160. 233.
    Cf. K. von Fritz, op. cit. (n. 2 above), pp. 76ff.Google Scholar
  161. 234.
    Cf. P. Tannery, Mém. scient. 2 540–4 and 48–63.Google Scholar
  162. 235.
    Ibid., 2 62–3. See also Chapter 3.21 above.Google Scholar
  163. 236.
    Proclus (ed. Friedlein), 182.6ff; see also 58.7ff.Google Scholar
  164. 237.
    It may be that Axiom 9, which is valid only for geometry, is spuriousGoogle Scholar
  165. 238.
    This was recognized already by Aristotle (Posterior Analytics I.10.76a37ff); cf. K. von Fritz, op. cit. (n. 2 above), p. 25.Google Scholar
  166. 239.
    Proclus (ed. Friedlein), 181.5ff; see also 178.12ff. (The translation is by Morrow, Princeton 1970.) Cf. A. Frenkian, Le postulat chez Euclide et chez les modernes (Paris 1940), p. 19.Google Scholar
  167. 242.
    Plato, Republic 510d: zoïç dew,uevoïç eiSeat neovxecbvzat xai zovç Adyovç neei a’t1zCUv notogvtat, oal neei zovSwv Stavoovµevot, Éxetvwv nÉet 0 zavTa ÉOtxe, zog zezeaycbvov avzov &’vexa zovç Adyovç notov,uevot xal zfiç Sta,uézeov avzijç, dAA’ ov zavz7Jç i)v Yedq7ovaev. (The translation is by A. D. Lindsay, Everyman’s Library 1950.)Google Scholar
  168. 243.
    Ibid., 527: Aéyovat µt’v nay l.cdAa yeRotwç re xai dvayxalwç citç yde nedzzovzéç TE xal nedEecoç &’vexa ndVzaç zovç Adyovç notovµevot At’yovacv zezeaywvletv TS real naeazelvetv xal 7ceoazo9gvat xal ndvza ovzw ¢a9eyy5µevot, zd d’sazt nog nCtv zd,ud79tlµa yvcûaecoç &’vexa sattzaJSevdyevov. (The translation is by A. D. Lindsay, Everyman’s Library 1950.)Google Scholar
  169. 245.
    Cf. W. Capelle, Die Vorsokratiker Leipzig 1935, pp. 172f.Google Scholar
  170. 246.
    Iamblichus, Vita Pythagorica 89. See also my paper `Deiknymi, als mathematischer Terminus für beweisen’ (referred to in n. 6 above) and Frenkian’s paper in Maia, N. S. 11 (1959), 243–5.Google Scholar
  171. 247.
    B. L. van der Waerden, Math. Ann. 120 (1947/49), 127. Aristotle (Metaphysics A5) explicitly states that the Pythagoreans were the first people to concern themselves with paNyaaa. Cf. also K. Reidemeister, Das exakte Denken der Griechen Hamburg 1949, p. 52.Google Scholar
  172. 248.
    B. Snell, Die Ausdrücke für den Begriff des Wissens in der vorplatonischen Philosophie Berlin 1924, pp. 59–71; A. Frekian, Revue des Études Indoeuropéennes Bucarest—Paris 1938, pp. 468–74.Google Scholar
  173. 251.
    Cf. my paper `Eleatica’ (see n. 33 above), pp. 98ff.Google Scholar
  174. 253.
    See my paper `Zur Geschichte der Dialektik des Denkens’, pp. 54ff. referred to in n. 33 above).Google Scholar
  175. 254.
    Diels and Kranz, Fragmente I.28b, fragment 2.5–8. The translation is by Kathleen Freeman.Google Scholar
  176. 256.
    See ‘Zum Verständnis der Eleaten’, pp. 262–5 (referred to in n. 33 above).Google Scholar
  177. 258.
    Timaeus 52a—b; the translation is by Benjamin Jowett (The Dialogues of Plato 3rd edn, Oxford 1892).Google Scholar
  178. 260.
    Frenkian (Le Postulat chez Euclide et chez les modernes Paris 1940 p. 25) discusses the expressions used to describe “space” and refers to Zeller’s Die Philosophie der Griechen II.1 (4th ed. 1889), note 722.Google Scholar
  179. 262.
    Republic VI 511d—e and VII 533e-534a.Google Scholar
  180. 267.
    J. E. Hofmann, Geschichte der Mathematik vol. 1 (Berlin 1953), p. 32.Google Scholar
  181. 268.
    Cf. A. D. Steele, op. cit. (n. 183 above), p. 308.Google Scholar
  182. 269.
    T. L. Heath, A History of Greek Mathematics (Oxford 1921), Vol. 1, p. 373.Google Scholar
  183. 270.
    See A. A. Frankel, Abstract Set Theory (Amsterdam 1953), p. 9–13.Google Scholar
  184. 271.
    Proclus (ed. Friedlein), 60.11ff.Google Scholar
  185. 275.
    Posterior Analytics I.10; the translation is by G. R. G. Mure (Oxford University Press 1928).Google Scholar
  186. 276.
    Proclus (ed. Friedlein), pp. 54–5.Google Scholar
  187. 277.
    N. Hartmann, Des Proklus Diadochus philosophische Anfangsgründe der Mathematik (Giessen 1909), p. 44. See also A. Speiser, Die mathematische Denkweise (Basel—Stuttgart 1952), pp. 64f.Google Scholar
  188. 278.
    H. G. Zeuthen, Math. Ann. 47 (1896), pp. 222–8.Google Scholar
  189. 279.
    O. Becker, Mathematische Existenz, Untersuchungen zur Logik and Ontologie mathematischer Phänomene (Halle 1927), p. 130.Google Scholar
  190. 280.
    A. Frajese, La matematica nel mondo antico (Roma 1951), p. 92.Google Scholar
  191. 281.
    Proclus (ed. Friedlein), 68.20ff.Google Scholar
  192. 282.
    A. Frajese (op. cit. (n. 280 above), p. 95) mentions as examples U. von Willamowitz-Moellendorff (Platon 3rd edn, Berlin 1929, p. 754) and E. Sachs (Die fünf platonischen Körper Berlin 1917, p. 159).Google Scholar
  193. 283.
    A. Frajese, op. cit. (n. 280 above), p. 95.Google Scholar
  194. 284.
    A. Robinson (in Problems in the Philosophy of Mathematics ed. by I. Lakatos, Amsterdam 1967, p. 11) has pointed out that “A contemporary intuitionist would reject this proof as it stands, since it tries to establish the proof of a positive, existential statement.”Google Scholar
  195. 287.
    Töplitz, `Mathematik und Antike’ Die Antike 1 (1925), 175–203.Google Scholar
  196. 288.
    Mathematische Existenz p. 250 (see n. 279 above).Google Scholar
  197. 289.
    Op. cit. (n. 287 above), p. 201.Google Scholar
  198. 290.
    Op. cit. (n. 287 above), pp. 201–2.Google Scholar
  199. 291.
    Mathematische Existenz (Halle 1927), p. 250, note 2.Google Scholar
  200. 292.
    Quellen und Studien… B, 3 (1936), 533–53. Cf. also O. Becker, Die Grundlagen der Mathematik in geschichtlicher Entwicklung Freiburg—Munich 1954, pp. 38ff.Google Scholar
  201. 293.
    Gnomon 23 (1951), 299.Google Scholar
  202. 294.
    Proclus (ed. Friedlein), 66.8ff; the translation is by Glenn R. Morrow., Princeton 1970.Google Scholar
  203. 295.
    K. Reidemeister, Das exacte Denken der Griechen Hamburg 1949, pp. 44 and 65.Google Scholar
  204. 296.
    B. L. van der Waerden, Erwachende Wissenschaft, p. 247.Google Scholar
  205. 297.
    See H. G. Zeuthen, `Sur les connaissances géométriques des Grecs’, p. 448 (a full reference is given in n. 286 above).Google Scholar
  206. 299.
    Die Antike 1 (1925), 182–3.Google Scholar
  207. 301.
    Die Antike 1 (1925), 192.Google Scholar
  208. 302.
    Cf. B. L. van der Waerden, Math. Ann. 120 (1947/49) 139–40 and Erwachende Wissenschaft p. 214.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1978

Authors and Affiliations

  • Árpád Szabó
    • 1
  1. 1.Mathematical InstituteHungarian Academy of SciencesHungary

Personalised recommendations