The Pre-Euclidean Theory of Proportions

  • Árpád Szabó
Part of the Synthese Historical Library book series (SYHL, volume 17)

Abstract

To the extent that it has been clarified by previous research, the early history of the theory of proportions found in Euclid can be summarized roughly as follows:

Keywords

Musical Theory Proportional Number Book Versus Numerical Ratio Musical Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cf. B. L. van der Waerden, Science Awakening (Oxford University Press 1961), pp. 175–6.Google Scholar
  2. 2.
    Cf. Euclides, Elements (ed. J. L. Heiberg, Lipsiae 1888–1916), Vol. V, p. 280.Google Scholar
  3. 3.
    T. L. Heath, Euclid’s Elements, Vol. 2, p. 112.Google Scholar
  4. 4.
    On this translation of the expression dvddoyov, see pp. 148–57ff.Google Scholar
  5. 5.
    See the paper by van der Waerden in Zur Geschichte der griechischen Mathematik, p. 225, n. 28.Google Scholar
  6. 7.
    Cf. O. Becker, Eudoxos-Studien I’ in Quellen und Studien zur Geschichte der Mathematik, etc. B, 2 (1933), p. 311–33.Google Scholar
  7. 8.
    A. Szabo, ‘Ein Beleg für die voreudoxische Proportionen-Lehre Y’ Archiv für Begriffsgeschichte (Bonn) 9 (1964), pp. 151–71.Google Scholar
  8. 9.
    Cf. O. Becker, Das Mathematische Denken der Antike (Göttingen 1957), 103, n. 25.Google Scholar
  9. 10.
    K. Heidemeister, Das Exakte Denken der Griechen, Hamburg 1949, p. 22.Google Scholar
  10. 11.
    See, for example, the paper ‘Die dQxal in der griechischen Mathematik’, Archiv für Begriffsgeschichte (Bonn) 1 (1955), pp. 13–103.Google Scholar
  11. 12.
    A. Szab6, ‘Die frühgriechische Proportionen-Lehre im Spiegel ihrer Terminologie’, Archive for History of Exact Sciences 2 (1965), pp. 197–270.Google Scholar
  12. 13.
    P.-H. Michel, De Pythagore à Euclide, Paris 1950, pp. 365ff.Google Scholar
  13. 14.
    R. Kühner and B. Gerth, Ausführliche Grammatik der griechischen Sprache, vol. 2, p. 490; 4th edn., Hanover 1955.Google Scholar
  14. 15.
    H. Diele and W. Kranz, Fragmente der Vorsokratiker, vol. 1, p. 436 (Archytas B2).Google Scholar
  15. 16.
    T. L. Heath, Euclid’s Elements, Vol. 2, p. 131.Google Scholar
  16. 20.
    Cf. Plato, The Republic, Book IV. 443d.Google Scholar
  17. 21.
    ‘Pseudo-Aristoteles, “De Rebus musicis problemata” ’ Musici scriptores graeci, ed. C. Janus (Lipsiae 1895), problems 23 and 25.Google Scholar
  18. 22.
    See the entry under 6to eia in Pape’s Dictionary (1849), also Porphyrios Kommentar zur Harmonielehre des Ptolemaios, ed. During (Göteborg 1932), p. 96. 21.Google Scholar
  19. 23.
    See the article by H. Koller in Museum Helveticum 16 (1959), pp. 238–48; also B. L. van der Waerden, ibid. 17 (1960), 111ff.Google Scholar
  20. 24.
    Diels and Kranz, Fragmente der Vorsokratiker, vol. 1, 44 B6.10ff.Google Scholar
  21. 25.
    W. Burkert, Weisheit und Wissenschaft, p. 348.Google Scholar
  22. 27.
    Musici scriptores graeci, ed. C. Janus (Lipsiae 1895), p. 179.11.Google Scholar
  23. 30.
    Die Harmonischen Fragmente des Aristoxenos, ed. P. Marquard, Berlin 1868, pp. 20ff.Google Scholar
  24. 31.
    C. Van Jan, ‘Aristoxenus’ (in Realencyclopädie III, pp. 1057–65).Google Scholar
  25. 32.
    See P. Marquard (ed.), Die Harmonischen Fragmente des Aristoxenos, pp. 46–7 (32, 19ff. in Meibom’s numbering).Google Scholar
  26. 33.
    Porphyrios, Kommentar zur Harmonielehre des Ptolemaios, ed. During (Göteborg 1932), p. 92, 22–3: xai T xavovexwv Si xal 7wt9ayoeeetcov of t2etovç Td Sr.aar4paTa dvri Twv Adywv Rsyovaiv. Google Scholar
  27. 35.
    Cf. H. Koller, Museum Helveticum 16 (1959), 240–1.Google Scholar
  28. 36.
    Gaudentius lived in the 4th century A.D. See Musici 8criptores Graeci, ed. C. Janus (Lipsiae 1895), p. 341. 13ff., for the quotation; cf. also B. L. van der Waerden, Science Awakening, p. 95.Google Scholar
  29. 37.
    The phrase `three parts of the whole’ means three quarters: similarly `two parts of the whole’ in the next sentence means two thirds. Google Scholar
  30. 38.
    W. Burkert, Weisheit und Wissenschaft, pp. 354ff.Google Scholar
  31. 40.
    Cf. Porphyrios, Kommentar zur Harmonielehre des Ptolemaios ed. During (Göteborg 1932), p. 66, 24ff.Google Scholar
  32. 41.
    According to Plato’s dialogue Philebus (17e—d), anyone who wants to be an expert in musical theory has to know “the intervals of high and low notes” (rci Staar? /1ara… rrlç g ovilç ô vzrlTÔÇ rc atégt xai ßagvrrlroç) and the “end points of these intervals” (xai rovç deovç rwv Staarretdrcov). Google Scholar
  33. 43.
    This also enables us to make sense of a fragment by Philolaus (Diels and Kranz, Fragmente der Vorsokratiker,I. 440 25): rtviç… Staaxi,ua éxculeaav civet varcgoxrv. The vnsgox4 is the difference between the two sections of string on a `canon’ which produce the two notes of a consonance.Google Scholar
  34. 45.
    Cf. B. L. van der Waerden, Hermes 78 (1943), 177.Google Scholar
  35. 47.
    The translation and interpretation of this passage is also discussed by van der Waerden, Hermes 78 (1943), 186–7.Google Scholar
  36. 49.
    See E. Frank, Plato und die sog. Pythagoreer (Halle 1923), pp. 160–1; W. Burkert, Weisheit und Wissenschaft, pp. 348–64; also van der Waerdens’ important paper (see Hermes ‘75 (1943)).Google Scholar
  37. 50.
    Theon of Smyrna, ed. E. Hiller (Lipsiae 1878), p. 59.Google Scholar
  38. 51.
    Diels and Kranz, Fragmente der Vorsokratiker, I. 18. 12; cf. also W. Burkert, Weisheit und Wissenschaft, pp. 355–6.Google Scholar
  39. 52.
    Cf. B. L. van der Waerden, Hermes 78 (1943), 172.Google Scholar
  40. 56.
    Hermes 78 (1943), pp. 173 4.Google Scholar
  41. 60.
    Cf. Nicomachi Enchiridion, ed. C. Janus 250. 22ff; also Plato’s Timaeus, 36.Google Scholar
  42. 62.
    The other possibility is that the muted section of string was regarded as the unit, but this seems unlikely in view of the related terms rµtdAtov and É,Ttlrelroe 6eciarliµa. Google Scholar
  43. 63.
    See n. 21 above (problem 41) or Plato’s Timaeus, 36.Google Scholar
  44. 64.
    Cf. Plato, Timaeus, 36; or Philolaus, fragment 6 (in Diels and Kranz, Fragmente der Vorsokratiker). Google Scholar
  45. 65.
    Cf. B. L. van der Waerden, Erwachende Wissenschaft, pp. 208 and 236.Google Scholar
  46. 67.
    Det Kgl. Danske Vidensk. Selsk. Skrifter, nat. og math. (Copenhagen), vol. 8, Raekke I, 1917, pp. 199–381.Google Scholar
  47. 68.
    Aristotle, Topica 3, p. 158b 29–35; cf. also nn. 7, 8 and 9 above.Google Scholar
  48. 69.
    G. Junge, `Von Hippasus bis Philolaus, “Classica et Mediaevalia” ’, Revue Danoise de Philologie et d’Histoire 19 (1958), pp. 41–72.Google Scholar
  49. 71.
    Alexander Aphrodisiensis (Vol. 2 of Commentaria in Aristotelem Graeca, ed. M. Wallies, Berlin 1892), p. 545.Google Scholar
  50. 75.
    L. van der Waerden, Erwachende Wissenschaft, p. 183.Google Scholar
  51. 77.
    Cf. the German translation of Philolaus’ words found in Diels and Kranz, Fragmente der Vorsokratiker vol. 1, p. 409.Google Scholar
  52. 78.
    See the previous note. This fragment of Philolaus is further evidence for the fact that the canon with its twelve divisions was already in existence at his time.Google Scholar
  53. 79.
    Die Harmonielehre des Klaudios Ptolemaios, ed. I. During, Berlin (1930). The whole passage is translated in van der Waerden, Hermes 78 (1943), 166ff. 8Ö Düring’s edition, p. 92.1ff.Google Scholar
  54. 81.
    Euclid usually employs the verbs avvrtOévat and avyrsia79at to mean add; see, for example, Elements IX.21 and 22.Google Scholar
  55. 82.
    It is worthwhile to recall here Thaers’ remark (to be found in his translation Die Elemente von Euclid, part 1, n. 60): “Definition VI. 5 is probably spurious, but it may well be part of a theory of proportions which antedates Book V.”Google Scholar
  56. 83.
    Math. Ann. 120 (1947/9), 133–4.Google Scholar
  57. 84.
    Van der Waerden; see the previous note.Google Scholar
  58. 85.
    Burkert, Weisheit und Wissenschaft, p. 348, n. 3, uses the word ‘Streckenvorstellung’ in this connection.Google Scholar
  59. 86.
    Plato und die sog. Pythagoreer, pp. 158–61, especially p. 158, n. 1.Google Scholar
  60. 89.
    Timaeus seu de Universe, 4 §12: “Id optime assequitur, quae Graece dvaAoyla Latine (audendum est enim, quoniam haec primum a nobis novantur) comparatio proportiove dici potest.”Google Scholar
  61. 90.
    See, for example, Plato’s Politicus 257b. or Aristotle, Nicomachean Ethics, 5. 3.Google Scholar
  62. 91.
    The same holds for Diels and Kranz, Fragmente der Vorsokratiker, I, p. 436, where the phrase dvd Adyov in the second Archytas-fragment is translated by the German word `analog’. I have no idea what the translator had in mind when he wrote this.Google Scholar
  63. 94.
    C. Thaer, Die Elemente von Euklid, Leipzig 1933–7.Google Scholar
  64. 98.
    See fragment 31 in Diels and Kranz, Fragmente der Vorsokratiker.Google Scholar
  65. 99.
    Procli Diadochi in primum Euclidis Elementorum Librum commentarii, ed. G. Friedlein (Lipsiae 1873), 117. 2.Google Scholar
  66. 100.
    Proklus Diadochus, Kommentar zum ersten Buch von Euklids Elementen, translated by P. L. Schönberger, ed. M. Steck, Halle 1945.Google Scholar
  67. 101.
    Euripides, The Phoenician Women, 478.Google Scholar
  68. 102.
    R. Kühner—B. Gerth, Ausführliche Grammatik der griechischen Sprache. Satzlehre I. Teil, 4th edition, Hannover 1955, p. 474.Google Scholar
  69. 103.
    For example, Definition VI. 1 and Proposition VI. 6.Google Scholar
  70. 106.
    Heath (Euclid’s Elements, Vol. 2, p. 312) makes the same point.Google Scholar
  71. 107.
    B. L. van der Waerden, Erwachende Wissenschaft, pp. 182ff.Google Scholar
  72. 109.
    The following, which is not a literal translation, is taken from van der Waerden’s paper, Hermes 78 (1943), 182.Google Scholar
  73. 110.
    Diels and Kranz, Fragmente der Vorsokratiker, I8, p. 436. Reidemeister (“Das Exakte Denken der Griechen”. Hamburg 1949, p. 27) claims that this fragment is not authentic. In my opinion, however, his argument is not convincing.Google Scholar
  74. 115.
    This is why the later Pythagoreans were able to refer to the remaining mean (yeadzrlaeç), which will not be discussed here, as &a/lay/a. On this subject, see P.-H. Michel, De Pythagore à Euclide, Paris 1950, pp. 365–411, also the paper of mine listed in n. 12 above, p. 102.Google Scholar
  75. 119.
    Metaphysics, N. 6.1093b17ff. For dvaîoyla in the sense of öpotdrrlç,see Philodemus: On Methods of Inference, A Study of Ancient Empiricism,P. H. Lacy and E. A. Lacy, Philadelphia 1941 Similarly Alexander Aphrodisiensis, (vol. 2 of Commentaria in Aristotelem Gracea ed. M. Wallies, Berlin 1892) p. 545, lff, explains dra2oyov as 6potov. On this latter, see my paper listed in n. 8 above.Google Scholar
  76. 120.
    O. Becker, Grundlagen der Mathematik in geschichtlicher Entwicklung Freiburg—Munich 1954, p. 27.Google Scholar
  77. 121.
    Most scholars since Tannery’s time have ascribed this proposition to Archytas (see, for example, van der Waerden, Hermes 78 (1943), 169). Our source, Boethius (De Musica III. 11), objects to “a proof of Archytas” when talking about the proposition in question. I do not think that this by itself is a sufficient reason to attribute the entire proposition to Archytas. In my opinion, Sectio Canons 3 was formulated long before his time.Google Scholar
  78. 122.
    As far as these other propositions are concerned, I cannot but agree with van der Waerden’s analysis (see the previous note). However, I would like to dissociate myself from the view that they are all due to Archytas himself.Google Scholar
  79. 123.
    Incidentally, I agree with van der Waerden’s remark (see Zur Geschichte der griechischen Mathematik, p. 224) to the effect that the problems in Book VIII are very closely connected with the theory of irrationals. These problems actually prepared the way for the theory of irrationals. This is one more reason why Book VIII could not have been written during the time of Archytas. The theory of irrationals, as we can see from the concept dynamis, dates back much earlier than this.Google Scholar
  80. 125.
    See B. L. van der Waerden, Erwachende Wissenschaft, p. 145. Google Scholar
  81. 127.
    O. Neugebauer, Studien zur Geschichte der antiker Algebra III, Quellen and Studien zur Geschichte der Math. etc. B, 3 (1936) 245–59. He goes on to say: “The substance of elementary geometry, the elementary theory of proportions and the theory of equations is to be found in the Babylonian mathematics upon which the Greeks built their own. In every case the connection between the two is obvious and undeniable.”Google Scholar
  82. 128.
    B. L. van der Waerden, Math. Ann. 120 (1947/9) 123.Google Scholar
  83. 129.
    B. L. van der Waerden, Erwachende Wissenschaft, p. 204.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1978

Authors and Affiliations

  • Árpád Szabó
    • 1
  1. 1.Mathematical InstituteHungarian Academy of SciencesHungary

Personalised recommendations