Advertisement

Functional structure of the peritoneum as a dialysing membrane

  • L. Gotloib
  • A. Shostak
  • V. Wajsbrot

Abstract

More than 90 years ago Robinson [1], after summarizing more than two centuries of research, defined the diverse natural functions of the peritoneum as follows: (a) to regulate fluid for nutrient and mechanical purposes; (b) to facilitate motion; (c) to minimize friction, and (d) to conduct vessels and nerves to the viscera.

Keywords

Peritoneal Dialysis Mesothelial Cell Original Magnification Open Arrow Parietal Peritoneum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Robinson B. The Peritoneum. Chicago, IL: WT Keener, 1897, p. 13.Google Scholar
  2. 2.
    Ganter G. Uber die Beseitigung giftiger Stoffe aus dem Blute durch dialyse. Munchen Med Wochenschr 1923; 70: 1478–80.Google Scholar
  3. 3.
    Boen ST. Peritoneal dialysis in clinical medicine. Springfield, IL: Charles C. Thomas, 1964.Google Scholar
  4. 4.
    Tenckhoff H. Schechter H. A bacteriologically safe peritoneal access device for repeated dialysis. Trans Am Soc Artif Intern Organs 1968; 14: 181–7.PubMedGoogle Scholar
  5. 5.
    Popovich RP, Moncrief JW, Decherd JF, Bomar JB, Pyle WK. Preliminary verification of the low dialysis clearance hypothesis via a novel equilibrium peritoneal dialysis technique. Abst Am Soc Artif Intern Organs 1976; 5: 64.Google Scholar
  6. 6.
    Nolph KD, Sorkin M, Rubin J, Arfania D, Prowant B, Fruto L, Kennedy D. Continuous ambulatory peritoneal dialysis: three-year experience at one center. Ann Intern Med 1980; 92: 609–13.PubMedGoogle Scholar
  7. 7.
    Luschka H. Die Structure der serosen haute des menschen. Tubingen, 1851.Google Scholar
  8. 8.
    Putiloff PV. Materials for the study of the laws of growth of the human body in relation to the surface areas of different systems: the trial on Russian subjects of planigraphic anatomy as a mean of exact anthropometry. Presented at the Siberian branch of the Russian Geographic Society, Omsk, 1886.Google Scholar
  9. 9.
    Wegner G. Chirurgische bemerkingen uber die peritoneal Hole, mit Besonderer Berucksichtigung der ovariotomie. Arch Klin Chir 1877; 20: 51–9.Google Scholar
  10. 10.
    Esperanca MJ, Collins DL. Peritoneal dialysis efficiency in relation to body weight. J Pediatr Surg 1966; 1: 162–9.Google Scholar
  11. 11.
    Gotloib L, Digenis GE, Rabinovich S, Medline A, Oreopolous DG. Ultrastructure of normal rabbit mesentery. Nephron 1983; 34: 248–55.PubMedGoogle Scholar
  12. 12.
    Gosselin RE, Berndt WO. Diffusional transport of solutes through mesentery and peritoneum. J Theor Biol 1962; 3: 487.Google Scholar
  13. 13.
    Haar JL, Ackerman GA. A phase and electron microscopic study of vasculogenesis and erythropoiesis in the yolk sac of the mouse. Anat Rec 1971; 170: 199–224.PubMedGoogle Scholar
  14. 14.
    Ukeshima A, Hayashi Y, Fujimore T. Surface morphology of the human yolk sac: endoderm and mesothelium 1986; 49: 483–94.Google Scholar
  15. 15.
    Puulmala RM. Morphologic comparison of parietal and visceral peritoneal epithelium in fetus and adult. Anat Rec 1937; 68: 327–30.Google Scholar
  16. 16.
    Robertson JD. Molecular structure of biological membranes. In: Lima de Faria, A., ed. Handbook of Molecular Cytology. Amsterdam: North Holland, 1969, p. 1404.Google Scholar
  17. 17.
    Kolossow A. Weber die struktur des endothels der pleuroperitoneal hole der blut and lymphgefasse. Biol Centralbl Bd 1892; 12: 587–94.Google Scholar
  18. 18.
    Odor L. Observations of the rat mesothelium with the electron and phase microscopes. Am J Anat 1954; 95: 433–65.PubMedGoogle Scholar
  19. 19.
    Felix DM, Dalton AJ. A comparison of mesothelial cells and macrophages in mice after the intraperitoneal inoculation of melanine granules. J Biophys Biochem Cytol 1956; 2 (suppl. part 2): 109–17.PubMedGoogle Scholar
  20. 20.
    Baradi AF, Hope J. Observations on ultrastructure of rabbit mesothelium. Exp Cell Res 1964; 34: 33–4.PubMedGoogle Scholar
  21. 21.
    Baradi AF, Crae SN. A scanning electron microscope study of mouse peritoneal mesothelium. Tissue Cell 1976; 8: 159.PubMedGoogle Scholar
  22. 22.
    Whitaker D, Papadimitriou JM, Walters MNI. The mesothelium and its reactions: a review. CRC Crit Rev Toxicol 1982; 10: 81–144.Google Scholar
  23. 23.
    Di Paolo N, Sacchi G, De-Mia M et al. Morphology of the peritoneal membrane during continuous ambulatory peritoneal dialysis. Nephron 1986; 44: 204–11.PubMedGoogle Scholar
  24. 24.
    Kondo T, Takeuchi K, Doi Y, Yonemura S, Nagata S, Tsukita S. ERM (ezrin-radixin/moesin)-based molecular mechanism of microvillar breakdown at an early stage of apoptosis. J Cell Biol 1997; 139: 749–58.PubMedGoogle Scholar
  25. 25.
    Bonelli G, Sacchi MC, Barbiero G et al. Apoptosis of L929 cells by etoposide: a quantitative and kinetic approach. Exp Cell Res 1996; 228: 292–305.PubMedGoogle Scholar
  26. 26.
    Boe R, Gjertsen BT, Doskeland SO, Vintermyr OK. 8-Chloro-cAMP induces apoptotic cell death in a human mammary carcinoma cell (MCF-7) line. Br J Cancer 1995; 72: 1151–9.PubMedGoogle Scholar
  27. 27.
    Efskind L. Experimentelle Untersuchungen uber die Biologie des Peritoneums. 1. Die morphologische reaktion des peritoneums auf riexze. Oslo: Det Norske Videnk aps Academü, 1940.Google Scholar
  28. 28.
    Gotloib L, Wajsbrut V, Shostak A, Kushnier R. Acute and long-term changes observed in imprints of mouse mesothelium exposed to glucose-enriched, lactated, buffered dialysis solutions. Nephron 1995; 70: 466–77.PubMedGoogle Scholar
  29. 29.
    Fukata H. Electron microscopic study on normal rat peritoneal mesothelium and its changes in adsorption of particulate iron dextran complex. Acta Pathol Jpn 1963; 13: 309–25.PubMedGoogle Scholar
  30. 30.
    Lieberman-Meffet D, White H. The greater omentum: anatomy, physiology, pathology, surgery with an historical survey. Berlin: Springer-Verlag, 1983, p. 6.Google Scholar
  31. 31.
    Madison LD, Bergstrom MU, Porter B, Torres R, Shelton E. Regulation of surface topography of mouse peritoneal cells. J Cell Biol 1979; 82: 783.PubMedGoogle Scholar
  32. 32.
    Gotloib L, Shostak A. Ultrastructural morphology of the peritoneum: new findings and speculations on transfer of solutes and water during peritoneal dialysis. Petit Dial Bull 1987; 7: 119–29.Google Scholar
  33. 33.
    Gotloib L. Anatomical basis for peritoneal permeability. In: La Greca G, Chiaramonte S, Fabris A, Feriani M, Ronco G, eds. Peritoneal Dialysis. Milan: Wichtig Ed, 1986, pp. 3–10.Google Scholar
  34. 34.
    Gotloib L, Shostak A, Jaichenko J. Ruthenium red stained anionic charges of rat and mice mesothelial cells and basal lamina: the peritoneum is a negatively charged dialyzing membrane. Nephron 1988; 48, 65–70.PubMedGoogle Scholar
  35. 35.
    Luft JH. Fine structure of capillary and endocapillary layer as revealed by ruthenium red. Fed Proc 1966; 25: 1173–83.Google Scholar
  36. 36.
    Gotloib L, Bar-Sella P, Jaichenko J, Shostak A. Ruthenium red stained polyanionic fixed charges in peritoneal microvessels. Nephron 1987; 47: 22–8.PubMedGoogle Scholar
  37. 37.
    Curry FE, Michel CC. A fiber matrix model of capillary permeability. Microvasc Res 1980; 20: 96–9.PubMedGoogle Scholar
  38. 38.
    Morris RG, Hargreaves AD, Duvall E, Wyllie AH. Hormone-induced cell death. 2. Surface changes in thymocytes undergoing apoptosis. Am J Pathol 1984; 115: 426–36.PubMedGoogle Scholar
  39. 39.
    Moog F. The lining of the small intestine. Sci Am 1981; 2455: 116–25.Google Scholar
  40. 40.
    Gotloib L. Anatomy of the peritoneal membrane. In: La Greca G, Biasoli G, Ronco G, eds. Milan: Wichtig Ed., 1982, pp. 17–30.Google Scholar
  41. 41.
    Leak LV. Distribution of cell surface charges on mesothelium and lymphatic endothelium. Microvasc Res 1986; 31: 18–30.PubMedGoogle Scholar
  42. 42.
    Lewis WH. Pinocytosis. Bull Johns Hopkins Hosp 1931; 49: 17–23.Google Scholar
  43. 43.
    Casley-Smith JR. The dimensions and numbers of small vesicles in cells, endothelial and mesothelial and the significance of these for endothelial permeability. J Microsc 1969; 90: 251–69.PubMedGoogle Scholar
  44. 44.
    Casley-Smith JR, Chin JC. The passage of cytoplasmic vesicles across endothelial and mesothelial cells. J Microsc 1971; 93: 167–89.PubMedGoogle Scholar
  45. 45.
    Fedorko ME, Hirsch JG, Fried B. Studies on transport of macromolecules and small particles across mesothelial cells of the mouse omentum. Exp Cell Res 1971; 63: 313–23.Google Scholar
  46. 46.
    Simionescu N, Simionescu M, Palade GE. Structural basis of permeability in sequential segments of the microvasculature. II. Pathways followed by microperoxidase across the endothelium. Microvasc Res 1978; 15: 17–36.PubMedGoogle Scholar
  47. 47.
    Palade GE, Simionescu M, Simionescu N. Structural aspects of the permeability of the microvascular endothelium. Acta Physiol Scand Suppl 1979; 463: 11–32.PubMedGoogle Scholar
  48. 48.
    Palade GE. Fine structure of blood capillaries. J Appl Phys 1953; 24: 1424.Google Scholar
  49. 49.
    Florey HW. The transport of materials across the capillary wall. Q J Exp Physiol 1964; 49: 117–28.PubMedGoogle Scholar
  50. 50.
    Pappenheimer JR, Renkin EM, Borrero LM. Filtration, diffusion and molecular sieving through peripheral capillary membranes. A contribution to the pore theory of capillary permeability. Am J Physiol 1951; 167: 13–46.PubMedGoogle Scholar
  51. 51.
    Frokjaer-Jensen J. The plasmalemmal vesicular system in capillary endothelium. Prog Appl Microcirc 1983; 1: 17–34.Google Scholar
  52. 52.
    Wagner RC, Robinson CS. High voltage electron microscopy of capillary endothelial vesicles. Microvasc Res 1984; 28: 197–205.PubMedGoogle Scholar
  53. 53.
    Smart EJ, Foster DC, Ying YS, Kamen BA, Anderson RGW. Protein kinase G activators inhibit receptor-mediated potocytosis by preventing internalization of caveolae. J Cell Biol 1994; 124: 307–13.PubMedGoogle Scholar
  54. 54.
    Lisanti MP, Scherer PE, Vidugiriene J et al. Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source: implications for human disease. J Cell Biol 1994; 126: 111–26.PubMedGoogle Scholar
  55. 55.
    Moldovan NI, Heltianu G, Simionescu N, Simionescu M. Ultrastructural evidence of differential solubility in Triton X-100 of endothelial vesicles and plasma membrane. Exp Cell Res 1995; 219: 309–13.PubMedGoogle Scholar
  56. 56.
    Shasby DM, Roberts RL. Transendothelial transfer of macromolecules in vivo. Fed Proc 1987; 46: 2506–10.PubMedGoogle Scholar
  57. 57.
    Shasby DM, Shasby SS. Active transendothelial transport of albumin. Interstitium to lumen. Circ Res. 1985; 57: 903–8.PubMedGoogle Scholar
  58. 58.
    Milici AJ, Watrous NE, Stukenbrok M, Palade GE. Transcytosis of albumin in capillary endothelium. J Cell Biol 1987; 105: 2603–12.PubMedGoogle Scholar
  59. 59.
    Ghitescu L, Bendayan M. Transendothelial transport of serum albumin: a quantitative immunocytochemical study. J Cell Biol 1992; 17: 747–55.Google Scholar
  60. 60.
    Schnitzer JE, Oh P. Albondin-mediated capillary permeability to albumin. Differential role of receptors in endothelial transcytosis and endocytosis of native and modified albumins. J Biol Chem 1994; 269: 6072–82.PubMedGoogle Scholar
  61. 61.
    Ghitescu L, Galis Z, Simionescu M, Simionescu N. Differentiated uptake and transcytosis of albumin in successive vascular segments. J Submicrosc Cytol Pathol 1988; 20: 657–69.PubMedGoogle Scholar
  62. 62.
    Williams SK, Devenny JJ, Bitensky MW. Micropinocytic ingestion of glycosylated albumin by isolated microvessels: possible role in pathogenesis of diabetic microangiopathy. Proc Natl Acad Sci USA 1981; 78: 2393–7.PubMedGoogle Scholar
  63. 63.
    Ghitescu L, Fixman A, Simionescu M, Simionescu N. Specific binding sites for albumin restricted to plasmalemmal vesicles of continuous capillary endothelium: receptor-mediated transcytosis. J Cell Biol 1986; 102: 1304–11.PubMedGoogle Scholar
  64. 64.
    Predescu D, Simionescu M, Simionescu N, Palade GE. Binding and transcytosis of glycoalbumin by the microvascular endothelium of the murine myocardium: evidence that glycoalbumin behaves as a bifunctional ligand. J Cell Biol 1988; 107: 1729–38.PubMedGoogle Scholar
  65. 65.
    Dehouck B, Fenart L, Dehouck MP, Pierce A, Torpier G, Cecchelli R. A new function for the LDL receptor: transcytosis of LDL across the blood-brain barrier. J Cell Biol 1997; 138: 877–89.PubMedGoogle Scholar
  66. 66.
    Simionescu N, Simionescu M. Interactions of endogenous lipoproteins with capillary endothelium in spontaneously hyperlipoproteinemic rats. Microvasc Res. 1985; 30: 314–32.PubMedGoogle Scholar
  67. 67.
    Snelting-Havinga I, Mommaas M, Van-Hinsbergh VW, Daha MR, Daems WT, Vermeer BJ. Immunoelectron microscopic visualization of the transcytosis of low density lipoproteins in perfused rat arteries. Eur J Cell Biol 1989; 48: 27–36.PubMedGoogle Scholar
  68. 68.
    Vasile E, Simionescu M, Simionescu N. Visualization of the binding, endocytosis, and transcytosis of low-density lipoprotein in the arterial endothelium in situ. J Cell Biol 1983; 96: 1677–89.PubMedGoogle Scholar
  69. 69.
    Ghinea N, Hai MTV, Groyer-Picard MT, Milgrom E. How protein hormones reach their target cells. Receptor mediated transcytosis of hCG through endothelial cells. J Cell Biol 1994; 125: 87–97.PubMedGoogle Scholar
  70. 70.
    Bendayan M, Rasio EA. Transport of insulin and albumin by the microvascular endothelium of the rete mirabile. J Cell Sci 1996; 109: 1857–64.PubMedGoogle Scholar
  71. 71.
    Schmidt AM, Vianna M, Gerlach M et al. Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. J Biol Chem 1992; 267: 14987–97.PubMedGoogle Scholar
  72. 72.
    Predescu D, Predescu S, McQuistan T, Palade GE. Transcytosis of alpha 1-acidic glycoprotein in the continuous microvascular endothelium. Proc Natl Acad Sci USA 1998; 95: 6175–80.PubMedGoogle Scholar
  73. 73.
    Pappenheimer JR. Passage of molecules through capillary walls. Physiol Rev 1953; 33: 387–423.PubMedGoogle Scholar
  74. 74.
    Grotte G. Passage of dextran molecules across the blood-lymph barrier. Acta Chir Scand 1956; Suppl. 211: 1–84.Google Scholar
  75. 75.
    Nolph KD. The peritoneal dialysis system. Contrib Nephrol 1979; 17: 44–9.PubMedGoogle Scholar
  76. 76.
    Gotloib L, Shostak A. Endocytosis and transcytosis of albumin-gold through mice peritoneal mesothelium. Kidney Int 1995; 47: 1274–84.PubMedGoogle Scholar
  77. 77.
    Schnitzer JE, Allard J, Oh P. NEM inhibits transcytosis, endocytosis and capillary permeability: implication of caveolae fusion in endothelia. Am J Physiol 1995; 168: H48–55.Google Scholar
  78. 78.
    Schnitzer JE, Oh P, Pinney E, Allard J. Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J Cell Biol 1994; 127: 1217–32.PubMedGoogle Scholar
  79. 79.
    Tiruppathi G, Song W, Bergenfeldt M, Sass P, Malik AB. Gp60 activation mediates albumin transcytosis in endothelial cells by tyrosine kinase-dependent pathway. J Biol Chem 1997; 272: 25968–75.PubMedGoogle Scholar
  80. 80.
    Schnitzer JE, Oh P, Jacobson BS, Dvorak AM. Caveolae from luminal plasmalemma of rat lung endothelium: microdomains enriched in caveolin, Ca (2 +)-ATPase, and inositol triphosphate receptor. Proc Natl Acad Sci USA 1995; 92: 1759–63.PubMedGoogle Scholar
  81. 81.
    Glenney JR, Soppet D. Sequence and expression of caveolin, a protein component of caveolae plasma membrane domains phosphorylated on tyrosine in Rous sarcoma virus-transformed fibroblasts. Proc Natl Acad Sci USA 1992; 89: 10517–21.PubMedGoogle Scholar
  82. 82.
    Bush KT, Stuart RO, Li SH et al. Epithelial inositol 1,4,5-triphosphate receptors. Multiplicity of localization, solubility, and isoforms. J Biol Chem 1994; 269: 23694–9.PubMedGoogle Scholar
  83. 83.
    Brown D, Lydon J, McLaughlin M, Stuart-Tilley A, Tyszkowski R, Alper S. Antigen retrieval in cryostat tissue sections and cultured cells by treatment with sodium dodecyl sulfate (SDS). Histochem Cell Biol 1996; 105: 261–7.PubMedGoogle Scholar
  84. 84.
    Breton S, Lisante MP, Tyszkowski R, McLaughlin M, Brown D. Basolateral distribution of caveolin-1 in the kidney. Absence from ATPase-coated endocytic vesicles in intercalated cells. J Histochem Cytochem 1998; 46: 205–14.PubMedGoogle Scholar
  85. 85.
    Schmid SL. Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu Rev Biochem 1997; 66: 511–48.PubMedGoogle Scholar
  86. 86.
    Pfeffer SR, Drubin DG, Kelly RB. Identification of three coated vesicle components as alpha-and beta-tubulin linked to a phosphorylated 50,000-dalton polypeptide. J Cell Biol 1983; 97: 40–7.PubMedGoogle Scholar
  87. 87.
    Pearse BMF. Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles. Proc Natl Acad Sci USA 1976; 73: 1255–9.PubMedGoogle Scholar
  88. 88.
    Lin HC, Duncan JA, Kozasa T, Gilman AG. Sequestration of the G protein beta gamma subunit complex inhibits receptor-mediated endocytosis. Proc Natl Acad Sci USA 1998; 95: 5057–60.PubMedGoogle Scholar
  89. 89.
    Damke H. Dynamin and receptor-mediated endocytosis. FEBS Lett 1996; 389: 48–51.PubMedGoogle Scholar
  90. 90.
    Sweitzer SM, Hinsshaw JE. Dynamin undergoes a GTP dependent conformational change causing vesiculation. Cell 1998; 93: 1021–9.PubMedGoogle Scholar
  91. 91.
    Henley JR, Krueger EW, Oswald BJ, McNiven MA. Dynamin-mediated internalization of caveolae. J Cell Biol 1998; 141: 85–99.PubMedGoogle Scholar
  92. 92.
    Oh P, McIntosh DP, Schnitzer JE. Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J Cell Biol 1998; 141: 101–14.PubMedGoogle Scholar
  93. 93.
    Chambers R, Zweifach BW. Capillary cement in relation to permeability. J Cell Comp Physiol 1940; 15: 255–72.Google Scholar
  94. 94.
    Rippe B. A three-pore model of peritoneal transport. Petit Dial Int 1993; 13 (suppl. 2): S35–8.Google Scholar
  95. 95.
    Simionescu N, Simionescu M, Palade GE. Differentiated microdomains on the luminal surface of capillary endothelium. I. Preferential distribution of anionic sites. J Cell Biol 1981; 90: 605–13.PubMedGoogle Scholar
  96. 96.
    Steinman RM, Mellman IS, Muller WA, Cohn ZA. Endocytosis and the recycling of plasma membrane. J Cell Biol 1983;Google Scholar
  97. 96:.
  98. 97.
    Shea SM, Karnovsky MJ. Brownian motion: a theoretical explanation for the movement of vesicles across the endothelium. Nature, Lond 1966; 212: 353–4.Google Scholar
  99. 98.
    Simionescu M, Simionescu N, Palade GE. Morphometric data on the endothelium of blood capillaries. J Cell Biol 1974; 60: 128–52.PubMedGoogle Scholar
  100. 99.
    Wagner JC, Johnson NF, Brown DG, Wagner MMF. Histology and ultrastructure of serially transplanted rat mesotheliotnas. Br J Cancer 1982; 46: 294–9.PubMedGoogle Scholar
  101. 100.
    Petersen OW, Van Deurs B. Serial section analysis of coated pits and vesicles involved in adsorptive pinocytosis in cultured fibroblasts. J Cell Biol 1983; 96: 277–81.PubMedGoogle Scholar
  102. 101.
    Peters KR, Carley WW, Palade GE. Endothelial plasmalemmal vesicles have a characteristic stripped bipolar surface structure. J Cell Biol 1985; 101: 2233–8.PubMedGoogle Scholar
  103. 102.
    Takahashi H, Hasegawa H, Kamijo T et al. Regulation and localization of peritoneal water channels in rats. Petit Dial Int 1998; 18 (suppl. 2): S70.Google Scholar
  104. 103.
    Henle FGH. Splacnologie. Vol. II, p. 175, 1875.Google Scholar
  105. 104.
    Simionescu M, Simionescu N, Silbert J, Palade GE. Differentiated microdomains on the luminal surface of the capillary endothelium. II. Partial characterization of their anionic sites. J Cell Biol 1981; 90: 614–21.PubMedGoogle Scholar
  106. 105.
    Simionescu M, Simionescu N. Organization of cell junctions in the peritoneal mesothelium. J Cell Biol 1977; 74: 98.PubMedGoogle Scholar
  107. 106.
    Von Recklinghausen FD. Zur Fettresorption. Arch Pathol Anat Physiol 1863; Bd 26: S172–208.Google Scholar
  108. 107.
    Bizzozero G, Salvioli G. Sulla suttura della membrana serosa e particolarmente del peritoneo diaphragmatico. Giorn R Acad Med Torino 1876; 19: 466–70.Google Scholar
  109. 108.
    Allen L. The peritoneal stomata. Anat Rec 1937; 67: 89–103.Google Scholar
  110. 109.
    French JE, Florey HW, Morris B. The adsorption of particles by the lymphatics of the diaphragm. Q J Exp Physiol 1959; 45: 88–102.Google Scholar
  111. 110.
    Tourneux F, Herman G. Recherches sur quelques epitheliums plats dans la serie animale (Deuxieme partie). J Anat Physiol 1876; 12: 386–424.Google Scholar
  112. 111.
    Kolossow A. Uber die struktur des pleuroperitoneal und gefassepithels (endothels). Arch Mikr Anat 1893; 42: 318–83.Google Scholar
  113. 112.
    Simer PM. The passage of particulate matter from the peritoneal cavity into the lymph vessels of the diaphragm. Anat Rec 1948; 101: 333–51.PubMedGoogle Scholar
  114. 113.
    Leak LW, Just EE. Permeability of peritoneal mesothelium. J Cell Biol 1976; 70: 423a.Google Scholar
  115. 114.
    Tsilibarry EC, Wissig SL. Absorption from the peritoneal surface of the muscular portion of the diaphragm. Am J Anat 1977; 149: 127–33.Google Scholar
  116. 115.
    French JE, Florey HW, Morris B. The absorption of particles by the lymphatics of the diaphragm. Q J Exp Physiol 1959; 45: 88–102.Google Scholar
  117. 116.
    Abu-Hijleh MF, Scothorne R.I. Studies on haemolymph nodes. IV. Comparison of the route of entry of carbon particles into parathymic nodes after intravenous and intraperitoneal injection. J Anat 1996; 188: 565–73.PubMedGoogle Scholar
  118. 117.
    Allen L. The peritoneal stomata. Anat Rec 1937; 67: 89–103.Google Scholar
  119. 118.
    Hashimoto B, Filly RA, Callen PW, Parer JT. Absorption of fetal intraperitoneal blood after intrauterine transfusion. J Ultrasound Med 1987; 6: 421–3.PubMedGoogle Scholar
  120. 119.
    Smedsrood B, Aminoff D. Studies on the sequestration of chemically and enzymatically modified erythrocytes. Am J Hematol 1983; 15: 123–33.PubMedGoogle Scholar
  121. 120.
    Fowler JM, Knight R, Patel KM. Intraperitoneal blood transfusion in African adults with hookworm anaemia. Br Med J 1968; 3: 200–1.Google Scholar
  122. 121.
    Chandler K, Fitzpatrik J, Mellor D, Milne M, Fishwick G. Intraperitoneal administration of whole blood as a treatment for anaemia in lambs. Vet Rec 1998; 142: 175–6.PubMedGoogle Scholar
  123. 122.
    Aba MA, Pissani AA, Alzola RH, Videla-Dorna I, Ghezzi MS, Marcilese NA. Evaluation of intraperitoneal route for the transfusion of erythrocytes using rats and dogs. Acta Physiol Pharmacol Ther Latinoam 1991; 41: 387–95.PubMedGoogle Scholar
  124. 123.
    Remmele W, Richter IE, Wildenhof H. Experimental investigations on cell resorption from the peritoneal cavity by use of the scanning electron microscope. Klin Wochenschr 1975; 53: 913–22.PubMedGoogle Scholar
  125. 124.
    Dumont AE, Maas WK, Iliescu H, Shin RD. Increased survival from peritonitis after blockade of transdiaphragmatic absorption of bacteria. Surg Gynecol Obstet 1986; 162: 248–52.PubMedGoogle Scholar
  126. 125.
    Leak LV. Permeability of peritoneal mesothelium: a TEM and SEM study. J Cell Biol 1976; 70: 423–33.Google Scholar
  127. 126.
    Leak LV. Polycationic ferritin binding to diaphragmatic mesothelial and lymphatic endothelial cells. J Cell Biol 1982; 95: 103–11.Google Scholar
  128. 127.
    Ettarh RR, Carr KE. Ultrastructural observations on the peritoneum in the mouse. J Anat 1996; 188: 211–5.PubMedGoogle Scholar
  129. 128.
    Wassilev M, Wedel T, Michailova K, Kuhnel W. A scanning electron microscopy study of peritoneal stomata in different peritoneal regions. Anat Anz 1998; 180: 137–43.Google Scholar
  130. 129.
    Li J, Zhou J, Gao Y. The ultrastructure and computer imaging of the lymphatic stomata in the human pelvic peritoneum. Anat Anz 1997; 179: 215–20.Google Scholar
  131. 130.
    Yoffey JM, Courtice FC. Lymphatics, Lymph and Lymphoid Tissue. London: Edward Arnold, 1956, p. 176.Google Scholar
  132. 131.
    Andrews PM, Porter KR. The ultrastructural morphology and possible functional significance of mesothelial microvilli. Anat Rec 1973; 177: 409–14.PubMedGoogle Scholar
  133. 132.
    Ghadially FN. Ultrastructural Pathology of the Cell. London: Butterworths, 1978, p. 403.Google Scholar
  134. 133.
    Todd RB, Bowman W. The Physiological Anatomy and Physiology of Man, Vols I and II. London, 1845 and 1846.Google Scholar
  135. 134.
    Muscatello G. Uber den Bau und das Aufsaugunsvermogen des Peritanaums. Virchows Archiv Path Anat 1895; Bd 142: 327–59.Google Scholar
  136. 135.
    Baron MA. Structure of the intestinal peritoneum in man. Am J Anat 1941; 69: 439–96.Google Scholar
  137. 136.
    Maximow A. Bindgewebe und blutbildende gewebe. Handbuch der mikroskopischen Anatomie des menschen. von Mollendorf, 1927; Bd 2 T 1: S232–583.Google Scholar
  138. 137.
    Kanwar YS, Farquhar MG. Anionic sites in the glomerular basement membrane. In vivo and in vitro localization to the laminae rarae by cationic probes. J Cell Biol 1979; 81: 137–53.PubMedGoogle Scholar
  139. 138.
    Rohrbach R. Reduced content and abnormal distribution of anionic sites (acid proteoglycans) in the diabetic glomerular basement membrane. Virchows Arch B Cell Pathol Incl Mol Pathol 1986; 51: 127–35.PubMedGoogle Scholar
  140. 139.
    Ghinea N, Simionescu N. Anionized and cationized hemeundecapeptides as probes for cell surface charge and permeability studies: differentiated labeling of endothelial plasmalemmal vesicles. J Cell Biol 1985; 100: 606–12.PubMedGoogle Scholar
  141. 140.
    Gotloib L, Shostak A, Jaichenko J. Loss of mesothelial electronegative fixed charges during murine septic peritonitis. Nephron 1989; 51: 77–83.PubMedGoogle Scholar
  142. 141.
    Shostak A, Gotloib L. Increased peritoneal permeability to albumin in streptozotocin diabetic rats. Kidney Int 1996; 49: 705–14.PubMedGoogle Scholar
  143. 142.
    Gotloib L, Shostak A, Bar-Sella P, Eiali V. Reduplicated skin and peritoneal blood capillaries and mesothelial basement membrane in aged non-diabetic chronic uremic patients. Petit Dial Bull 1984; 4: S28.Google Scholar
  144. 143.
    Di Paolo N, Sacchi G. Peritoneal vascular changes in continuous ambulatory peritoneal dialysis (CAPD): an in-vivo model for the study of diabetic microangiopathy. Petit Dial Int 1989; 9: 41–5.Google Scholar
  145. 144.
    Gersh I, Catchpole HR. The organization of ground substances and basement membrane and its significance in tissue injury, disease and growth. Am J Anat 199; 85: 457–522.Google Scholar
  146. 145.
    Williamson JT, Vogler NJ, Kilo CH. Regional variations in the width of the basement membrane of muscle capillaries in man and giraffe. Am J Pathol 1971; 63: 359–67.PubMedGoogle Scholar
  147. 146.
    Vracko R. Skeletal muscle capillaries in non-diabetics. A quantitative analysis. Circulation 1970; 16: 285–97.Google Scholar
  148. 147.
    Parthasarathy N, Spiro RG. Effect of diabetes on the glycosaminoglycan component of the human glomerular basement membrane. Diabetes 1982; 31: 738–41.PubMedGoogle Scholar
  149. 148.
    Vracko R. Basal lamina scaffold–anatomy and significance for maintenance of orderly tissue structure. A review. Am J Pathol 1974; 77: 313–46.Google Scholar
  150. 149.
    Vracko R, Pecoraro RE, Carter WB. Basal lamina of epidermis, muscle fibers, muscle capillaries, and renal tubules: changes with aging and diabetes mellitus. Ultrastruct Pathol 1980; 1, 559–74.PubMedGoogle Scholar
  151. 150.
    Hruza Z. Connective tissue. In: Kaley G, Altura BM, eds. Microcirculation. Baltimore, MD: University Park Press, 1977, Vol. I, pp. 167–183.Google Scholar
  152. 151.
    Comper WD, Laurent TC. Physiological function of connective tissue polysaccharides. Physiol Rev 1978; 58: 255–315.PubMedGoogle Scholar
  153. 152.
    Flessner MF. The importance of the interstitium in peritoneal transport. Petit Dial Int 1996; 16 (suppl. 1): S76–9.Google Scholar
  154. 153.
    Parker JC, Gilchrist S, Cartledge JT. Plasma-lymph exchange and interstitial distribution volumes of charged macromolecules in the lung. J Appl Physiol 1985; 59: 1128–36.PubMedGoogle Scholar
  155. 154.
    Lai-Fook SJ, Brown LV. Effects of electric charge on hydraulic conductivity of pulmonary interstitium. J Appl Physiol 1991; 70: 1928–32.PubMedGoogle Scholar
  156. 155.
    Gilchrist SA, Parker JC. Exclusion of charged macromolecules in the pulmonary interstitium. Microvasc Res 1985; 30: 88–98.PubMedGoogle Scholar
  157. 156.
    Haljamae H. Anatomy of the interstitial tissue. Lymphology 1978; 11: 128–32.PubMedGoogle Scholar
  158. 157.
    Guyton AC. A concept of negative interstitial pressure based on pressures in implanted perforated capsules. Circ Res 963; 12: 399–414.Google Scholar
  159. 158.
    Scholander PF, Hargens AR, Miller SL. Negative pressure in the interstitial fluid of animals. Fluid tensions are spectacular in plants; in animals they are elusively small, but just as vital. Science 1968; 161: 321–8.PubMedGoogle Scholar
  160. 159.
    Aukland K, Reed PK. Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol Rev 1993; 73: 1–78.PubMedGoogle Scholar
  161. 160.
    Rutili G, Arfors KE. Protein concentration in interstitial and lymphatic fluids from the subcutaneous tissue. Acta Physiol Scand 1977; 99: 1–8.PubMedGoogle Scholar
  162. 161.
    Rutili G, Kvietys P, Martin D, Parker JC, Taylor AE. Increased pulmonary microvascular permeability induced by alpha-naphthylthiourea. J App] Physiol 1982; 52: 1316–23.Google Scholar
  163. 162.
    Flessner MF. Peritoneal transport physiology: insights from basic research. J Am Soc Nephrol 1991; 2: 122–35.PubMedGoogle Scholar
  164. 163.
    Gotloib L, Mines M, Garmizo AL, Varka I. Hemodynamic effects of increasing intra-abdominal pressure in peritoneal dialysis. Petit Dial Bull 1981; 1: 41–2.Google Scholar
  165. 164.
    Flessner MF, Schwab A. Pressure threshold for fluid loss from the peritoneal cavity. Am J Physiol 1996; 270: F377–90.PubMedGoogle Scholar
  166. 165.
    Simionescu N. Cellular aspects of transcapillary exchange. Physiol Rev 983; 63: 1536–79.Google Scholar
  167. 166.
    Wolff JR. Ultrastructure of the terminal vascular bed as related to function. In: Kaley G, Altura BM, eds. Microcirculation. Baltimore, MD: University Park Press, 1977, Vol. I, pp. 95–130.Google Scholar
  168. 167.
    Majno G. Ultrastructure of the vascular membrane. Handbook of Physiology. Section II–Circulation, vol. III. Washington, DC: Am Physiol Soc, 1965, pp. 2293–375.Google Scholar
  169. 168.
    Gotloib L, Shostak A, Jaichenko J. Fenestrated capillaries in mice submesothelial mesenteric microvasculature. Int J Artif Organs 1989; 12: 20–4.PubMedGoogle Scholar
  170. 169.
    Gotloib L, Shostak A. In search of a role for submesothelial fenestrated capillaries. Perit Dial Int 1993; 13: 98–102.PubMedGoogle Scholar
  171. 170.
    Gotloib L, Shostak A, Bar-Sella P, Eiali V. Fenestrated capillaries in human parietal and rabbit diaphragmatic peritoneum. Nephron 1985; 41: 200–2.PubMedGoogle Scholar
  172. 171.
    Friederici HHR. The tridimensional ultrastructure of fenestrated capillaries. J Ultrastruct Res 1968; 23: 444–56.PubMedGoogle Scholar
  173. 172.
    Clough G, Smaje LH. Exchange area and surface properties of the microvasculature of the rabbit submandibular gland following duct ligation. J Physiol 1984; 354: 445–56.PubMedGoogle Scholar
  174. 173.
    Gotloib L, Shostak A, Jaichenko J, Galdi P, Fudin R. Anionic fixed charges in the fenestrated capillaries of the mouse mesentery. Nephron 1990; 55: 419–22.PubMedGoogle Scholar
  175. 174.
    Rhodin JAG. The diaphragm of capillary endothelial fenestrations. J Ultrastruc Res 1962; 6: 171–85.Google Scholar
  176. 175.
    Gotloib L, Shostak A, Bar-Sella P, Eiali V. Heterogeneous density and ultrastructure of rabbit’s peritoneal microvasculature. Int J Artif Organs 1984; 7: 123–5.PubMedGoogle Scholar
  177. 176.
    Rhodin YAG. Ultrastructure of mammalian venous capillaries, venules and small collecting veins. J Ultrastruct Res 1968; 25: 452–500.PubMedGoogle Scholar
  178. 177.
    Gotloib L, Shostak A, Jaichenko J. Loss of mesothelial and microvascular fixed anionic charges during murine experimentally induced septic peritonitis. In: Avram M and Giordano G, eds. Ambulatory Peritoneal Dialysis. New York: Plenum, 1990, pp. 63–6.Google Scholar
  179. 178.
    Simionescu M, Simionescu N, Palade GE. Differentiated microdomains on the luminal surface of capillary endothelium: distribution of lectin receptors. J Cell Biol 1982 94, 406–13.PubMedGoogle Scholar
  180. 179.
    Schneeberger EE, Hamelin M. Interactions of serum proteins with lung endothelial glycocalyx: its effect on endothelial permeability. Am J Physiol 1984; 247: H206–17.PubMedGoogle Scholar
  181. 180.
    Bundgaard M, Frokjaer-Jensen J. Functional aspects of the ultrastructure of terminal blood vessels: a quantitative study on consecutive segments of the frog mesenteric microvasculature. Microvasc Res 1982; 23: 1 30.Google Scholar
  182. 181.
    Palade GE. Transport in quanta across the endothelium of blood capillaries. Anat Rec 1960; 116: 254.Google Scholar
  183. 182.
    Milici AJ, L’Hernault N, Palade GE. Surface densities of diaphragmed fenestrae and transendothelial channels in different murine capillary beds. Cire Res 1985; 56, 709–17.Google Scholar
  184. 183.
    Lombardi T, Montesano R, Furie MB, Silverstein SC, Orci L. In-vitro modulation of endothelial fenestrae: opposing effects of retinoic acid and transforming growth factor beta. J Cell Sci 1988; 91: 313–8.PubMedGoogle Scholar
  185. 184.
    Kitchens CS, Weiss L. Ultrastructural changes of endothelium associated with thrombocytopenia. Blood 1975; 46: 567–78.PubMedGoogle Scholar
  186. 185.
    Horiuchi T, Weller PF. Expression of vascular endothelial growth factor by human eosinophils: upregulation by granulocyte macrophage colony-stimulating factor and interleukin-5. Am J Respir Cell Mol Biol 1997; 17: 70–7.PubMedGoogle Scholar
  187. 186.
    Collins PD, Connolly DT, Williams TJ. Characterization of the increase in vascular permeability induced by vascular permeability factor in vivo. Br J Pharmacol 1993; 109: 195–9.PubMedGoogle Scholar
  188. 187.
    Yeo KT, Wang HH, Nagy JA, Sioussat TM et al. Vascular permeability factor (vascular endothelial growth factor) in guinea pig and human tumor inflammatory effusions. Cancer Res 1993; 53: 2912–18.PubMedGoogle Scholar
  189. 188.
    Taichman NS, Young S, Cruchley AT, Taylor P, Paleolog E. Human neutrophils secrete vascular endothelial growth factor. J Leukoc Biol 1997; 62: 397–400.PubMedGoogle Scholar
  190. 189.
    Roberts WG, Palade GE. Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor: J Cell Sci 1995; 108: 2369–70.PubMedGoogle Scholar
  191. 190.
    Roberts WG, Palade GE. Neovasculature induced by vascular endothelial growth factor is fenestrated. Cancer Res 1997; 57: 765–72.PubMedGoogle Scholar
  192. 191.
    Simionescu M, Simionescu N, Palade GE. Sulfated glycosaminoglycans are major components of the anionic sites of fenestral diaphragms in capillary endothelium. J Cell Biol 1979; 83: 78a.Google Scholar
  193. 192.
    Milici AJ, L’Hernault N. Variation in the number of fenestrations and channels between fenestrated capillary beds. J Cell Biol 1983; 97: 336.Google Scholar
  194. 193.
    Peters KR, Milici AJ. High resolution scanning electron microscopy of the lumina] surface of a fenestrated capillary endothelium. J Cell Biol 1983; 97: 336a.Google Scholar
  195. 194.
    Bankston PW, Milici AJ. A survey of the binding of poly-cationic ferritin in several fenestrated capillary beds: indication of heterogeneity in the luminal glycocalyx of fenestral diaphragms. Microvasc Res 1983; 26: 36–49.PubMedGoogle Scholar
  196. 195.
    Levick JR, Smaje LH. An analysis of the permeability of a fenestra. Microvasc Res 1987; 33: 233–56.PubMedGoogle Scholar
  197. 196.
    Wayland H, Silberberg A. Blood to lymph transport. Micro-vase Res 1978; 15: 367–74.Google Scholar
  198. 197.
    Bearer EL, Orci L. Endothelial fenestral diaphragms: a quick freeze, deep-etch study. J Cell Biol 1985; 100: 418–28.PubMedGoogle Scholar
  199. 198.
    Simionescu M, Simionescu N, Palade GE. Preferential distribution of anionic sites on the basement membrane and the abluminal aspect of the endothelium in fenestrated capillaries. J Cell Biol 1982; 95: 425–34.PubMedGoogle Scholar
  200. 199.
    Deen WN, Satvat B. Determinants of the glomerular filtration of proteins. Am J Physiol 1981; 241: F162–70.PubMedGoogle Scholar
  201. 200.
    Deen WM, Bohrer MP, Robertson CR, Brenner BM. Determinants of the transglomerular passage of macromolecules. Fed Proc 1977; 36: 2614–8.PubMedGoogle Scholar
  202. 201.
    Kanwar YS, Linker A, Farquhar MG. Characterization of anionic sites in the glomerular basement membrane: in vitro and in vivo localization to the lamina rarae by cationic probes. J Cell Biol 1980; 86: 688–93.PubMedGoogle Scholar
  203. 202.
    Renkin EM. Multiple pathways of capillary permeability. Cire Res 1977; 41: 735–43.Google Scholar
  204. 203.
    Charonis AS, Wissig SL. Anionic sites in basement membranes. Differences in their electrostatic properties in continuous and fenestrated capillaries. Microvasc Res 1983; 25: 265–85.PubMedGoogle Scholar
  205. 204.
    Renkin EM. Cellular and intercellular transport pathways in exchange vessels. Am Rev Respir Dis 1992; 146: S28–31.PubMedGoogle Scholar
  206. 205.
    Farquhar MG, Palade GE. Junctional complexes in various epithelia. J Cell Biol 1963; 17: 375–442.PubMedGoogle Scholar
  207. 206.
    Simionescu M, Simionescu N, Palade GE.: Segmental differentiations of cell junctions in the vascular endothelium. J Cell Biol 1975; 67: 863–85.PubMedGoogle Scholar
  208. 207.
    Thorgeirsson G, Robertson AL Jr. The vascular endothelium. Pathobiologic significance. Am J Pathol 198; 95: 801–48.Google Scholar
  209. 208.
    Gumbiner B. Breaking through the tight junction barrier. J Cell Biol 1993; 123: 1631–3.PubMedGoogle Scholar
  210. 209.
    Gumbiner B. Structure, biochemistry, and assembly of epithelial tight junctions. Am J Physiol 1987; 253: C749–58.PubMedGoogle Scholar
  211. 210.
    Furuse M, Hirase T, Itoh M et al. Occludin: a novel integral membrane protein localized at tight junctions. J Cell Biol 1993; 123: 1777–88.PubMedGoogle Scholar
  212. 211.
    Furuse M, Itoh M, Hirase T et al. Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J Cell Biol 1994; 127: 1617–26.PubMedGoogle Scholar
  213. 212.
    Hirase T, Staddon JM, Saitou Met al. Occludin as a possible determinant of tight junction permeability in endothelial cells. J Cell Sci 1997; 110: 1603–13.PubMedGoogle Scholar
  214. 213.
    Balda MS, Anderson JM. Two classes of tight junctions are revealed by ZO-1 isoforms. Am J Physiol 1993; 264: C918–24.PubMedGoogle Scholar
  215. 214.
    Mitic LL, Anderson JM. Molecular architecture of tight junctions. Annu Rev Physiol 1998; 60: 121–42.PubMedGoogle Scholar
  216. 215.
    Navarro P, Caveda L, Breviario F, Mandoteanu I, Lampugnani MG, Dejana E. Catenin-dependent and independent functions of vascular endothelial cadherin. J Biol Chem 1995; 270: 30965–72.PubMedGoogle Scholar
  217. 216.
    Leach L, Firth JA. Structure and permeability of human placental microvasculature. Microsci Res Tech 1997; 38: 137–44.Google Scholar
  218. 217.
    Alexander JS, Blaschuk OW, Haselton FR. An N-cadherinlike protein contributes to solute barrier maintenance in cultured endothelium. J Cell Physiol 1993; 156: 610–8.PubMedGoogle Scholar
  219. 218.
    Bundgaard M. The three dimensional organization of tight junctions in capillary endothelium revealed by serial-section electron microscopy. J Ultrastruct Res 1984; 88: 1–17.PubMedGoogle Scholar
  220. 219.
    Zand T, Underwood JM, Nunnari JJ, Majno G, Joris I. Endothelium and `silver lines’. An electron microscopic study. Virchows Arch Pathol Anat 1982; 395: 133–44.PubMedGoogle Scholar
  221. 220.
    Anderson JM, Van-Itallie CM. Tight junctions and the molecular basis for regulation of paracellular permeability. Am J Physiol 1995; 269: G467–75.PubMedGoogle Scholar
  222. 221.
    Robinson PJ, Rapoport SI. Size selectivity of blood-brain barrier permeability at various times after osmotic opening. Am J Physiol 1987; 253: R459–66.PubMedGoogle Scholar
  223. 222.
    Blum MS, Toninelli E, Anderson JM et al. Cytoskeletal rearrangement mediates human microvascular endothelial tight junction modulation by cytokines. Am J Physiol 1997; 273: H286–94.PubMedGoogle Scholar
  224. 223.
    Schneeberger EE, Lynch RD. Structure, function and regulation of cellular tight junctions. Am J Physiol 1992; 262: L647–61.PubMedGoogle Scholar
  225. 224.
    Burns AR, Walker DC, Brown ES et al. Neutrophil transendothelial migration is independent of tight junctions and occurs preferentially at tricellular corners. J Immunol 1997; 159: 2893–903.PubMedGoogle Scholar
  226. 225.
    Rohrbach DH, Hassell JR, Klechman HK, Martin GR. Alterations in basement membrane (heparan sulfate) proteoglycan in diabetic mice. Diabetes 1982; 31: 185–8.PubMedGoogle Scholar
  227. 226.
    Chakrabarti S, Ma N, Sima AAF. Anionic sites in diabetic basement membranes and their possible role in diffusion barrier abnormalities in the BB-rat. Diabetologia 1991; 34: 301–6.PubMedGoogle Scholar
  228. 227.
    Shimomura H, Spiro RG. Studies on macromolecular components of human glomerular basement membrane and alterations in diabetes. Decreased levels of heparan sulfate, proteoglycan and laminin. Diabetes 1987; 36: 374–81.PubMedGoogle Scholar
  229. 228.
    Abrahamson DR. Recent studies on the structure and pathology of basement membranes. J Pathol 1986; 149: 257–78.PubMedGoogle Scholar
  230. 229.
    Hasslacher G, Reichenbacher R, Getcher F, Timpl R. Glomerular basement membrane synthesis and serum concentration of type IV collagen in streptozotocin-diabetic rats. Diabetologia 984; 26: 150–4.Google Scholar
  231. 230.
    Li W, Shen S, Khatami M, Rockey JH. Stimulation of retinal capillary pericyte protein and collagen synthesis in culture by high glucose concentration. Diabetes 1984; 33: 785–9.PubMedGoogle Scholar
  232. 231.
    Cagliero E, Maiello M, Boeri D, Roy S, Lorenzi M. Increased expression of basement membrane components in human endothelial cells cultured in high glucose. J Clin Invest 1988; 82: 735–8.PubMedGoogle Scholar
  233. 232.
    Ashworth CT, Erdmann RR, Arnold NJ. Age changes in the renal basement membrane of rats. Am J Pathol 1960; 36: 165–79.PubMedGoogle Scholar
  234. 233.
    Pino RM, Essner E, Pino LC. Location and chemical composition of anionic sites in Bruch’s membrane of the rat. J Histochem Cytochem 1982; 30: 245–52.PubMedGoogle Scholar
  235. 234.
    Kanwar YS, Rosenzweig LJ, Kerjaschki DI. Glycosaminoglycans of the glomerular basement membrane in normal and nephrotic states. Ren Physiol 1981; 4: 121–30.PubMedGoogle Scholar
  236. 235.
    Kitano Y, Yoshikawa N, Nakamura H. Glomerular anionic sites in minimal change nephrotic syndrome and focal segmental glomerulosclerosis. Clin Nephrol 1993; 40: 199–204.PubMedGoogle Scholar
  237. 236.
    Torihara K, Suganuma T, Ide S, Morimitsu T. Anionic sites in blood capillaries of the mouse cochlear duct. Hear Res 1994; 77: 69–74.PubMedGoogle Scholar
  238. 237.
    Lawrenson JG, Reid AR, Allt G. Molecular characterization of anionic sites on the luminal front of endoneural capillaries in sciatic nerve. J Neurocytol 1994; 23: 29–37.PubMedGoogle Scholar
  239. 238.
    Lawrenson JG, Reid AR, Allt G. Molecular characteristics of pial microvessels of the rat optic nerve. Can pial microvessels be used as a model for the blood-brain barrier ? Cell Tissue Res 1997; 288: 259–65.PubMedGoogle Scholar
  240. 239.
    Vorbrodt AW. Ultracytochemical characterization of anionic sites in the wall of brain capillaries. J Neurocytol 1989; 18: 359–68.PubMedGoogle Scholar
  241. 240.
    Dos-Santos WL, Rahman J, Klein N, Male DK. Distribution and analysis of surface charge on brain endothelium in vitro and in situ. Acta Neuropathol Berl 1995; 90: 305–11.PubMedGoogle Scholar
  242. 241.
    Ohtsuka A, Yamana S, Murakami T. Localization of membrane associated sialomucin on the free surface of mesothelial cells of the pleura, pericardium, and peritoneum. Histochem Cell Biol 1997; 107: 441–7.PubMedGoogle Scholar
  243. 242.
    Meirelles MN, Souto-Padron T, De-Souza W. Participation of cell surface anionic sites in the interaction between Trypanosoma cruzi and macrophages. J Submicrosc Cytol 1984; 16: 533–45.PubMedGoogle Scholar
  244. 243.
    Danon D, Marikovsky Y. The aging of the red blood cell. A multifactor process. Blood Cells 1988; 14: 7–18.PubMedGoogle Scholar
  245. 244.
    Lupu G, Calb M. Changes in the platelet surface charge in rabbits with experimental hypercholesterolemia. Artherosclerosis 1988; 72: 77–82.Google Scholar
  246. 245.
    Curry FE. Determinants of capillary permeability: a review of mechanisms based on single capillary studies in the frog. Circ Res 1986; 59: 367–80.PubMedGoogle Scholar
  247. 246.
    Haraldsson B. Physiological studies of macromolecular transport across capillary walls. Acta Physiol Scand 1986; 128 (suppl. 553): 1–40.Google Scholar
  248. 247.
    Hardebo JE, Kahrstrom J. Endothelial negative surface charge areas and blood-brain barrier function. Acta Physiol Scand 1985; 125: 495–9.PubMedGoogle Scholar
  249. 248.
    Brenner BM, Hostetter TH, Humes HD. Glomerular permeability: barrier function based on discrimination of molecular size and charge. Am J Physiol 1978; 234: F455–60.PubMedGoogle Scholar
  250. 249.
    Bray J, Robinson GB. Influence of charge on filtration across renal basement membrane films in vitro. Kidney Int 1984; 25: 527–33.PubMedGoogle Scholar
  251. 250.
    Skutelsky E, Danon D. Redistribution of surface anionic sites on the luminal front of blood vessel endothelium after interaction with polycationic ligand. J Cell Biol 1976; 71: 232–41.PubMedGoogle Scholar
  252. 251.
    Reeves WH, Kanwar YS, Farquhar MG. Assembly of the glomerular filtration surface. Differentiation of anionic sites in glomerular capillaries of newborn rat kidney. J Cell Biol 1980 85: 735–53.PubMedGoogle Scholar
  253. 252.
    Adamson RH, Huxley VH, Curry FE. Single capillary permeability to proteins having similar size but different charge. Am J Physiol 1988; 254: H304–12.PubMedGoogle Scholar
  254. 253.
    Nakao T, Ogura M, Takahashi H, Okada T. Charge-affected transperitoneal movement of amino acids in CAPD. Perit Dial Int 1996; 16 (suppl. 1): 588–90.Google Scholar
  255. 254.
    Leypoldt JK, Henderson LW. Molecular charge influences transperitoneal macromolecule transport. Kidney Int 1933; 43: 837–44.Google Scholar
  256. 255.
    Myers BD, Guasch A. Selectivity of the glomerular filtration barrier in healthy and nephrotic humans. Am J Nephrol 1993; 13: 311–7.PubMedGoogle Scholar
  257. 256.
    Krediet RT, Koomen GC, Koopman MG et al. The peritoneal transport of serum proteins and neutral dextran in CAPD patients. Kidney Int 1989; 35: 1064–72.PubMedGoogle Scholar
  258. 257.
    Vernier RL, Steffes MW, Sisson-Ross S, Mauer SM. Heparan sulfate proteoglycan in the glomerular basement membrane in type 1 diabetes mellitus. Kidney Int 1992; 41: 1070–80.PubMedGoogle Scholar
  259. 258.
    Vernier RL, Klein DJ, Sisson SP, Mahan JD, Oegema TR, Brown DM. Heparan sulfate-rich anionic sites in the human glomerular basement membrane. N Engl J Med 1983; 309: 1001–9.PubMedGoogle Scholar
  260. 259.
    Van-den-Heuvel LP, Van-den-Born J, Jalanko H et al. The glycosaminoglycan content of renal basement membranes in the congenital nephrotic syndrome of the Finnish type. Pediatr Nephrol 1992; 6: 10–15.PubMedGoogle Scholar
  261. 260.
    Washizawa K, Kasai S, Mori T, Komiyama A, Shigematsu H. Ultrastructural alteration of glomerular anionic sites in nephrotic patients. Pediatr Nephrol 1993; 7: 1–5.PubMedGoogle Scholar
  262. 261.
    Ramjee G, Coovadia HM, Adhikari M. Direct and indirect tests of pore size and charge selectivity in nephrotic syndrome. J Lab Clin Med 1996; 127: 195–9.PubMedGoogle Scholar
  263. 262.
    Rosenzweig LJ, Kanwar YS. Removal of sulfated (heparan sulfate) or nonsulfated (hyaluronic acid) glycosaminoglycans results in increased permeability of the glomerular basement membrane to ‘25I-bovine serum albumin. Lab Invest 1982; 47: 177–84.PubMedGoogle Scholar
  264. 263.
    Wu VY, Wilson B, Cohen MP. Disturbances in glomerular basement membrane glycosaminoglycans in experimental diabetes. Diabetes 1987; 36: 679–83.PubMedGoogle Scholar
  265. 264.
    Van-den-Born J, Van-Kraats AA, Bakker MA et al. Reduction of heparan sulphate-associated anionic sites in the glomerular basement membrane of rats with streptozotocininduced diabetic nephropathy. Diabetologia 1995; 38: 1169–75.PubMedGoogle Scholar
  266. 265.
    Galdi P, Shostak A, Jaichenko J, Fudin R, Gotloib L. Prot-amine sulfate induces enhanced peritoneal permeability to proteins. Nephron 1991; 57: 45–51.PubMedGoogle Scholar
  267. 266.
    Arfors KE, Rutili G, Svensjo E. Microvascular transport of macromolecules in normal and inflammatory conditions. Acta Physiol Scand Suppl 1979; 463: 93–103.PubMedGoogle Scholar
  268. 267.
    Gotloib L, Shostak A, Jaichenko J, Galdi P. Decreased density distribution of mesenteric and diaphragmatic microvascular anionic charges during murine abdominal sepsis. Resuscitation 1988; 16: 179–92.PubMedGoogle Scholar
  269. 268.
    Gotloib L, Shostak A, Galdi P, Jaichenko J, Fudin R. Loss of microvascular negative charges accompanied by interstitial edema in septic rats’ heart. Circ Shock 1992; 36: 45–6.PubMedGoogle Scholar
  270. 269.
    Gotloib L, Shostak A. Lessons from peritoneal ultra-structure: from an inert dialyzing sheet to a living membrane. Contrib Nephrol 1992; 100: 207–35.PubMedGoogle Scholar
  271. 270.
    Shostak A, Gotloib L. Increased mesenteric, diaphragmatic, and pancreatic interstitial albumin content in rats with acute abdominal sepsis. Shock 1998; 9: 135–7.PubMedGoogle Scholar
  272. 271.
    Gotloib L, Barzilay E, Shostak A, Lev A. Sequential hemofiltration in monoliguric high capillary permeability pulmonary edema of severe sepsis: preliminary report. Crit Care Med 1984; 12: 997–1000.PubMedGoogle Scholar
  273. 272.
    Gotloib L, Barzilay E, Shostak A, Wais Z, Jaichenko J, Lev A. Hemofiltration in septic ARDS. The artificial kidney as an artificial endocrine lung. Resuscitation 1986; 13: 123–32.PubMedGoogle Scholar
  274. 273.
    Klein NJ, Shennan GI, Heyderman RS, Levin M. Alteration in glycosaminoglycan metabolism and surface charge on human umbilical vein endothelial cells induced by cytokines, endotoxin and neutrophils. J Cell Sci 1992; 102: 821–32.PubMedGoogle Scholar
  275. 274.
    Bone RC. The pathogenesis of sepsis. Ann Intern Med 1991; 115: 457–69.PubMedGoogle Scholar
  276. 275.
    Bone RS. Immunologic dissonance: a continuing evolution in our understanding of the systemic inflammatory response syndrome (SIRS) and the multiple organ dysfunction syndrome (MODS). Ann Intern Med 1996; 125: 680–87.PubMedGoogle Scholar
  277. 276.
    Gotloib L, Wajsbrot V, Shostak A, Kushnier R. Population analysis of mesothelium in situ and in vivo exposed to bicarbonate-buffered peritoneal dialysis fluid. Nephron 1996; 73: 219–27.PubMedGoogle Scholar
  278. 277.
    Sirois MG, Edelman ER. VEGF effect on vascular permeability is mediated by synthesis of platelet-activating factor. Am J Physiol 1997; 272: H2746–56.PubMedGoogle Scholar
  279. 278.
    Ryan GB, Grobety J, Majno G. Mesothelial injury and recovery. Am J Pathol 1973; 71: 93–112.PubMedGoogle Scholar
  280. 279.
    Gabbiani G, Badonnel MC, Majno G. Intra-arterial injections of histamine, serotonin, or bradykinin: a topographic study of vascular leakage. Proc Soc Exp Biol Med 1970; 135: 447–52.PubMedGoogle Scholar
  281. 280.
    Ryan GB, Majno G. Acute inflammation. A review. Am J Pathol 1977; 86: 183–276.PubMedGoogle Scholar
  282. 281.
    Doris I, Majno G, Corey EJ, Lewis RA. The mechanism of vascular leakage induced by leukotriene E4. Endothelial contraction. Am J Pathol 1987; 126: 19–24.Google Scholar
  283. 282.
    Gardner TW, Lesher T, Khin S, Vu G, Barber AJ, Brennan WA Jr. Histamine reduces ZO-1 tight-junction protein expression in cultured retinal microvascular endothelial cells. Biochem J 1996; 320: 717–21.PubMedGoogle Scholar
  284. 283.
    Kevil CG, Payne DK, Mire E, Alexander JS. Vascular permeability factor/vascular endothelial cell growth factor-mediated permeability occurs through disorganization of endothelial junctional proteins. J Biol Chem 1998; 273: 15099–103.PubMedGoogle Scholar
  285. 284.
    Predescu D, Palade GE. Plasmalemmal vesicles represent the large pore system of continuous microvascular endothelium. Am J Physiol 1993; 265: H725–33.PubMedGoogle Scholar
  286. 285.
    Esser S, Wolburg K, Wolburg H, Breier G, Kurzchalia T, Risau W. Vascular endothelial growth factor induces endothelial fenestrations in vitro. J Cell Biol 1998; 140: 947–59.PubMedGoogle Scholar
  287. 286.
    Feng D, Nagy JA, Hipp J, Pyne K, Dvorak AM. Reinterpretation of endothelial cell gaps induced by vasoactive mediators in guinea-pig, mouse and rat: many are transcellular pores. J Physiol Lond 1997; 504: 747–61.PubMedGoogle Scholar
  288. 287.
    Carlsson O, Nielsen S, Zakaria-el R, Rippe B. In vivo inhibition of transcellular water channels (aquaporin-1) during acute peritoneal dialysis in rats. Am J Physiol 1996; 271: H2254–62.PubMedGoogle Scholar
  289. 288.
    Panekeet MM, Mulder JB, Weening JJ, Struijk DG, Zweers MM, Krediet RT. Demonstration of aquaporin-CHIP in peritoneal tissue of uremic and CAPD patients. Petit Dial Int 1996; 16 (suppl. 1): S54–7.Google Scholar
  290. 289.
    Schnitzer JE, Oh P. Aquaporin-1 in plasma membrane and caveolae provides mercury-sensitive water channels across lung endothelium. Am J Physiol 1996; 270: H416–22.PubMedGoogle Scholar
  291. 290.
    Nielsen S, Smith BL, Christensen EI, Agre P. Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc Natl Acad Sci USA 1993; 90: 7275–79.PubMedGoogle Scholar
  292. 291.
    Wintour EM. Water channels and urea transporters. Clin Exp Pharmacol Physiol 1997; 24: 1–9.PubMedGoogle Scholar
  293. 292.
    Ikomi F, Hunt J, Hanna G, Schmid-Schonbein GW. Interstitial fluid, plasma protein, colloid, and leukocyte uptake into initial lymphatics. J Appl Physiol 1996; 81: 2060–7.PubMedGoogle Scholar
  294. 293.
    Rutili G, Parker JC, Taylor AE. Fluid balance in ANTUinjured lungs during crystalloid and colloid infusions. J Appl Physiol 1984; 56: 993–8.PubMedGoogle Scholar
  295. 294.
    Drake RE, Gabel JC. Abdominal lymph flow response to intraperitoneal fluid in awake sheep. Lymphology 1991; 24: 77–81.PubMedGoogle Scholar
  296. 295.
    Ottaviani G, Azzali G Ultrastructure of lymphatic vessels in some functional conditions. In: Comel M, Laszt L, eds. Morphology and Histochemistry of the Vascular Wall. Basel: Karger, 1966, pp. 325.Google Scholar
  297. 296.
    Foldi M, Csanda E, Simon M et al. Lymphogenic haemangiopathy. `Prelymphatic’ pathways in the wall of cerebral and cervical blood vessels. Angiologica 1968; 5: 250–62.PubMedGoogle Scholar
  298. 297.
    Hauck G. The connective tissue space in view of the lymphology. Experientia 1982; 38: 1121–2.PubMedGoogle Scholar
  299. 298.
    Crone G. Exchange of molecules between plasma, interstitial tissue and lymph. Pflugers Arch Suppl 1972: 65–79.Google Scholar
  300. 299.
    Casley-Smith JR. Lymph and lymphatics. In: Kaley G, Altura BM, eds. Microcirculation, vol. 4. Baltimore, MD: University Park Press, 1981, pp. 423.Google Scholar
  301. 300.
    Schmid-Schonbein GW. Mechanisms causing initial lymphatics to expand and compress to promote lymph flow. Arch Histol Cytol 1990; 53 (suppl. 1): 107–14.PubMedGoogle Scholar
  302. 301.
    Rhodin JA, Sue SL. Combined intravital microscopy and electron microscopy of the blind beginnings of the mesenteric lymphatic capillaries of the rat mesentery. A preliminary report. Acta Physiol Scand Suppl 1979; 463: 51–8.PubMedGoogle Scholar
  303. 302.
    Jones WR, O’Morchoe CC, Jarosz HM, O’Morchoe PJ. Distribution of charged sites on lymphatic endothelium. Lymphology 1986; 19: 5–14.PubMedGoogle Scholar
  304. 303.
    Schmid-Schonbein GW. Microlymphatics and lymph flow. Physiological Rev 1990; 70: 987–1028.Google Scholar
  305. 304.
    Leak LV, Burke JF. Fine structure of the lymphatic capillary and the adjoining connective tissue area. Am J Anat 1966; 118: 785–809.PubMedGoogle Scholar
  306. 305.
    Leak LV, Burke JF. Electron microscopic study of lymphatic capillaries in the removal of connective tissue fluids and particulate substances. Lymphology 1968; 1: 39–52.PubMedGoogle Scholar
  307. 306.
    Gerli R, Ibba L, Fruschelli G. Ultrastructural cytochemistry of anchoring filaments of human lymphatic capillaries and their relation to elastic fibers. Lymphology 1991; 24: 105–12.PubMedGoogle Scholar
  308. 307.
    Taylor AE. The lymphatic edema safety factor: the role of edema dependent lymphatic factors (EDLF). Lymphology 190; 23: 111–23.Google Scholar
  309. 308.
    Hogan RD, Unthank JL. The initial lymphatics as sensors of interstitial fluid volume. Microvasc Res 1986 31: 317–24.PubMedGoogle Scholar
  310. 309.
    Leak LV. Distribution of cell surface charges on mesothelium and lymphatic endothelium. Microvasc Res 986; 31: 18–30.Google Scholar
  311. 310.
    Leak V. Electron microscopic observations on lymphatic capillaries and the structural components of the connective tissue-lymph interface. Microvasc Res 1970; 2: 361–91.PubMedGoogle Scholar
  312. 311.
    Leak LV. The structure of lymphatic capillaries in lymph formation. Fed Proc 1976 35: 1863–71.PubMedGoogle Scholar
  313. 312.
    Shinohara H, Nakatani T, Matsuda T. Postnatal development of the ovarian bursa of the golden hamster (Mesocricetus auratus): its complete closure and morphogenesis of lymphatic stomata. Am J Anat 1987; 179: 385–402.PubMedGoogle Scholar
  314. 313.
    Hauck G. Capillary permeability and micro-lymph drainage. Vasa 1994; 23: 93–7.PubMedGoogle Scholar
  315. 314.
    McCallum WG. On the mechanisms of absorption of granular material from the peritoneum. Bull Johns Hopkins Hosp 1903; 14, 105–15.Google Scholar
  316. 315.
    Tsilibary EC, Wissig SL. Absorption from the peritoneal cavity. SEM study of the mesothelium covering the peritoneal surface of the muscular portion of the diaphragm. Am J Anat 1977; 149: 127–33.PubMedGoogle Scholar
  317. 316.
    Leak LV, Rahil K. Permeability of the diaphragmatic mesothelium. The ultrastructural basis for stomata. Am J Anat 1978; 151: 557–92.PubMedGoogle Scholar
  318. 317.
    Leak LV. Lymphatic endothelial-interstitial interface. Lymphology 187; 20: 196–204.Google Scholar
  319. 318.
    Simer PM. Omental lymphatics in man. Anat Rec 1935; 63: 253–62.Google Scholar
  320. 319.
    Vajda J. Innervation of lymph vessels. Acta Morphol Acad Sci Hung 1966; 14: 197–208.PubMedGoogle Scholar
  321. 320.
    Hargens AR, Zweifach BW. Contractile stimuli in collecting lymph vessels. Am J Physiol 1977; 233: H57–65.PubMedGoogle Scholar
  322. 321.
    Gnepp DR, Green FH. Scanning electron microscopic study of canine lymphatic vessels and their valves. Lymphology 1980; 13: 91–9.PubMedGoogle Scholar
  323. 322.
    Ohtani O. Structure of lymphatics in rat cecum with special reference to submucosal collecting lymphatics endowed with smooth muscle cells and valves. I. A scanning electron microscopic study. Arch Hist Cytol 1992; 55: 429–36.Google Scholar
  324. 323.
    Moller R. Arrangement and fine structure of lymphatic vessels in the human spermatic cord. Andrologia 1980; 12: 564–76.PubMedGoogle Scholar
  325. 324.
    Zweifach BW, Prather JW. Micromanipulation of pressure in terminal lymphatics in the mesentery. Am J Physiol 1975; 228: 1326–35.PubMedGoogle Scholar
  326. 325.
    Horstmann E. Anatomie and Physiologie des lymphgefa B systems im bauchraum. In: Bartelheimer H, Heising N, eds. Actuelle Gastroenterologie. Stuttgart: Verh, Thieme, 1968, p. 1.Google Scholar
  327. 326.
    Ohhashi T, Azuma T, Sakaguchi M. Active and passive mechanical characteristics of bovine mesenteric lymphatics. Am J Physiol 1980; 239: H88–95.PubMedGoogle Scholar
  328. 327.
    Watanabe N, Kawai Y, Ohhashi T. Demonstration of both B1 and B2 adrenoreceptors mediating negative chronotropic effects on spontaneous activity in isolated bovine mesenteric lymphatics. Microvasc Res 1990; 39: 50–9.PubMedGoogle Scholar
  329. 328.
    Ohhashi T, Azuma T. Sympathetic effects on spontaneous activity in bovine mesenteric lymphatics (retracted by Ohhashi T, Azuma T. In: Am J Physiol 1986; 251: H226). Am J Physiol 1984; 247: H610–15.Google Scholar
  330. 329.
    Ohhashi T, Azuma T Pre and postjunctional alpha-adrenoceptors at the sympathetic neuroeffector junction in bovine mesenteric lymphatics. Microvac Res 1986; 31: 31–40.Google Scholar
  331. 330.
    Watanabe N, Kawai Y, Ohhashi T. Dual effects of histamine on spontaneous activity in isolated bovine mesenteric lymphatics. Microvasc Res 1988; 36: 239–49.PubMedGoogle Scholar
  332. 331.
    Ferguson MK, Shahinian HK, Michelassi F. Lymphatic smooth muscle responses to leukotrienes, histamine and platelet activating factor. J Surg Res 1988; 44: 172–7.PubMedGoogle Scholar
  333. 332.
    Ohhashi T, Kawai Y, Azuma T. The response of lymphatic smooth muscles to vasoactive substances. Pflugers Arch 1978; 375: 183–8.PubMedGoogle Scholar
  334. 333.
    Azuma T, Ohhashi T, Roddie IC. Bradykinin-induced contractions of bovine mesenteric lymphatics. J Physiol Lond 1983; 342: 217–27.PubMedGoogle Scholar
  335. 334.
    Ohhashi T, Olschowka JA, Jacobowitz DM. Vasoactive intestinal peptide inhibitory innervation in bovine mesenteric lymphatics. A histochemical and pharmacological study. Circ Res 1983; 53: 535–8.PubMedGoogle Scholar
  336. 335.
    Abu-Hiljeh MF, Habbai OA, Moqattash ST. The role of the diaphragm in lymphatic absorption from the peritoneal cavity. J Anat 1995; 186: 453–67.Google Scholar
  337. 336.
    Fruschelli G, Gerli R, Alessandrini G, Sacchi G. Il controllo neurohumorale dalla contratilita dei vasi linfatici. In: Atti dalla Societa Italiana di Anatomia. 39th Convegno Nazaionale, 19/21 September. Firenze: I Sedicesimo, 1983, p. 2.Google Scholar
  338. 337.
    Starling EH, Tubby A. On absorption from and secretion into the serous cavities. J Physiol (Lond) 1894; 16: 140–55.Google Scholar
  339. 338.
    Starling EH. On the absorption of fluid from the connective tissue spaces. J Physiol (Lond) 1896; 19: 312–21.Google Scholar
  340. 339.
    Drinker CF, Field ME. The protein of mammalian lymph and the relation of lymph to tissue fluid. Am J Physiol 1931; 97: 32–45.Google Scholar
  341. 340.
    Allen L, Vogt E. Mechanisms of lymphatic absorption from serous cavities. Am J Physiol 1937; 119: 776–82.Google Scholar
  342. 341.
    Brace RA, Guyton AC. Interstitial fluid pressure: capsule, free fluid, gel fluid and gel absorption pressure in subcutaneous tissue. Microvasc Res 1979; 18: 217–28.PubMedGoogle Scholar
  343. 342.
    Guyton AC, Granger HJ, Taylor AE. Interstitial fluid pressure. Physiol Rev 1971; 51: 527–63.PubMedGoogle Scholar
  344. 343.
    Guyton AC, Taylor AE, Granger HJ, Gibson WH. Regulation of interstitial fluid volume and pressure. Adv Exp Med Biol 1972; 33: 111–8.PubMedGoogle Scholar
  345. 344.
    Guyton AC, Taylor AE, Brace RA. A synthesis of interstitial fluid regulation and lymph formation. Fed Proc 976; 35: 1881–5.Google Scholar
  346. 345.
    Zink J, Greenway CV. Intraperitoneal pressure in formation and reabsorption of ascites in cats. Am J Physiol 1977; 233: H185–90.PubMedGoogle Scholar
  347. 346.
    Zink J, Greenway CV. Control of ascites absorption in anesthetized cats: effects of intraperitoneal pressure, protein, and furosemide diuresis. Gastroenterology 1977; 73: 119–24.Google Scholar
  348. 347.
    Imholz AL, Koomen GC, Struijk DG, Arisz L, Krediet RT. Effect of an increased intraperitoneal pressure on fluid and solute transport during CAPD. Kidney Int 1993; 44: 1078–85.PubMedGoogle Scholar
  349. 348.
    Durand PY, Chanliau J, Gamberoni J, Hestin D, Kessler M. Intraperitoneal pressure, peritoneal permeability and volume of ultrafiltration in CAPD. Adv Petit Dial 1992; 8: 22–5.Google Scholar
  350. 349.
    Gotloib L, Garmizo AL, Varka I, Mines M. Reduction of vital capacity due to increased intra-abdominal pressure during peritoneal dialysis. Petit Dial Bull 1981; 1: 63–4.Google Scholar
  351. 350.
    Flessner MF. Net ultrafiltration in peritoneal dialysis: role of direct fluid absorption into peritoneal tissue. Blood Purif 1992; 10: 136–47.PubMedGoogle Scholar
  352. 351.
    Flessner MF, Parker RJ, Sieber SM. Peritoneal lymphatic uptake of fibrinogen and erythrocytes in the rat. Am J Physiol 1983; 244: H89–96.PubMedGoogle Scholar
  353. 352.
    Silk YN, Goumas WM, Douglass HO Jr, Huben RP. Chylous ascites and lymphocyst management by peritoneovenous shunt. Surgery 1991; 110: 561–5.PubMedGoogle Scholar
  354. 353.
    Casley Smith JR. A fine structural study of variations in protein concentration in lacteals during compression and relaxation. Lymphology 1979; 12: 59–65.PubMedGoogle Scholar
  355. 354.
    O’Morchoe CC, Jones WR 3d, Jarosz HM, O’Morchoe PJ, Fox LM. Temperature dependence of protein transport across lymphatic endothelium in vitro. J Cell Biol 1984; 98: 629–40.PubMedGoogle Scholar
  356. 355.
    Dobbins WO, Rollins EL Intestinal mucosal lymphatic permeability: an electron microscopic study of endothelial vesicles and cell junctions. J Ultrastruct Res 1970; 33: 29–59.PubMedGoogle Scholar
  357. 356.
    Shasby DM, Peterson MW. Effects of albumin concentration on endothelial albumin transport in vitro. Am J Physiol 1987; 253: H654–61.PubMedGoogle Scholar
  358. 357.
    Albertini KH, O’Morchoe CC. Renal lymphatic ultra-structure and translymphatic transport. Microvasc Res 1980; 19: 338–51.Google Scholar
  359. 358.
    Haller A. Primae linae physiologiae in usum Praelectionum Academicarum avetae et emendato. Gottingae, Capit 25, 1751, p. 41.Google Scholar
  360. 359.
    Furness JB. Arrangement of blood vessels and their relation with adrenergic nerves in the rat mesentery. J Anat 1973; 115: 347–64.PubMedGoogle Scholar
  361. 360.
    Beattie JM. The cells of inflammatory exudations: an experimental research as to their function and density, and also as to the origin of the mononucleated cells. J Pathol Bacteriol 1903; 8: 130–77.Google Scholar
  362. 361.
    Durham HE. The mechanism of reaction to peritoneal infection. J Pathol Bacteriol 1897; 4: 338–82.Google Scholar
  363. 362.
    Josey AL. Studies in the physiology of the eosinophil. V. The role of the eosinophil in inflammation. Folia Haematol 1934; 51: 80–95.Google Scholar
  364. 363.
    Webb RL. Changes in the number of cells within the peritoneal fluid of the white rat, between birth and sexual maturity. Folia Haematol 1934; 51: 445–51.Google Scholar
  365. 364.
    Padawer J, Gordon AS. Cellular elements in the peritoneal fluid of some mammals. Anat Rec 1956; 124: 209–22.PubMedGoogle Scholar
  366. 365.
    Fruhman GJ. Neutrophil mobilization into peritoneal fluid. Blood 1960; 16: 1753–61.PubMedGoogle Scholar
  367. 366.
    Seeley SF, Higgins GM, Mann FC. The cytologic response of the peritoneal fluid to certain substances. Surgery 1937; 2: 862–76.Google Scholar
  368. 367.
    Bercovici B, Gallily R. The cytology of the human peritoneal fluid. Cytology 1978; 22: 124.Google Scholar
  369. 368.
    Becker S, Halme J, Haskill S. Heterogeneity of human peritoneal macrophages: cytochemical and flow cytometric studies. J Reticuloendothel Soc 1983; (ES) 33: 127–38.Google Scholar
  370. 369.
    De Brux JA, Dupre-Froment J, Mintz M.: Cytology of the peritoneal fluids sampled by coelioscopy or by cul de sac puncture. Its value in gynecology. Acta Cytol 1968; 12: 395–403.PubMedGoogle Scholar
  371. 370.
    Mahoney CA, Sherwood N, Yap EH, Singleton TP, Whitney DJ, Cornbleet PJ. Ciliated cell remnants in peritoneal dialysis fluid. Arch Pathol Lab Med 1993; 117: 211–3.PubMedGoogle Scholar
  372. 371.
    Fruhmann GJ. Adrenal steroids and neutrophil mobilization. Blood 1962; 20: 335–63.Google Scholar
  373. 372.
    Spriggs AI, Boddington MM. The Cytology of Effusions, 2nd edn. New York: Grune and Straton, 1968, pp. 5–17.Google Scholar
  374. 373.
    Domagala W, Woyke S. Transmission and scanning electron microscopic studies of cells in effusions. Acta Cytol 1975; 19: 214–24.PubMedGoogle Scholar
  375. 374.
    Efrati P, Nir E. Morphological and cytochemical investigation of human mesothelial cells from pleural and peritoneal effusions. A light and electron microscopy study. Israel J Med Sci 976; 12: 662–73.Google Scholar
  376. 375.
    Bewtra Ch, Greer KP. Ultrastructural studies of cells in body cavity effusions. Acta Cytol 1985 29: 226–38.PubMedGoogle Scholar
  377. 376.
    Chapman JS, Reynolds RC. Eosinophilic response to intraperitoneal blood. J Lab Clin Med 1958; 51: 516–20.PubMedGoogle Scholar
  378. 377.
    Northover BJ. The effect of various anti-inflammatory drugs on the accumulation of leucocytes in the peritoneal cavity of mice. J Pathol Bacteriol 1964; 88: 332–5.PubMedGoogle Scholar
  379. 378.
    Hurley JV, Ryan GB, Friedman A. The mononuclear response to intrapleural injection in the rat. J Pathol Bact 1966; 91: 575–87.Google Scholar
  380. 379.
    Rubin J, Rogers WA, Taylor HM. et al. Peritonitis during continuous ambulatory peritoneal dialysis. Ann Intern Med 1980; 92: 7–13.PubMedGoogle Scholar
  381. 380.
    Cichoki T, Hanicki Z, Sulowicz W, Smolenski O, Kopec J, Zembala M. Output of peritoneal cells into peritoneal dialysate. Cytochemical and functional studies. Nephron 1983; 35: 175–82.Google Scholar
  382. 381.
    Strippoli P, Coviello F, Orbello G et al. First exchange neutrophilia is not always an index of peritonitis during CAPD. Adv Petit Dial 1989; 4: 121–3.Google Scholar
  383. 382.
    Kubicka U, Olszewski WL, Maldyk J, Wierzbicki Z, Orkiszewska A. Normal human immune peritoneal cells: phenotypic characteristics. Immunobiology 1989; 180: 80–92.PubMedGoogle Scholar
  384. 383.
    Gotloib L, Mines M, Garmizo AL, Rodoy Y. Peritoneal dialysis using the subcutaneous intraperitoneal prosthesis. Dial Transplant 1979; 8: 217–20.Google Scholar
  385. 384.
    Hoeltermann W, Schlotmann-Hoelledr E, Winkelmann M, Pfitzer P. Lavage fluid from continuous ambulatory peritoneal dialysis. A model for mesothelial cell changes. Acta Cytol 1989; 33: 591–4.PubMedGoogle Scholar
  386. 385.
    Chan MK, Chow L, Lam SS, Jones B. Peritoneal eosinophilia in patients on continuous ambulatory peritoneal dialysis: a prospective study. Am J Kidney Dis 1988; 11: 180–3.Google Scholar
  387. 386.
    Gokal R, Ramos JM, Ward MK, Kerr DN. `Eosinophilic’ peritonitis in continuous ambulatory peritoneal dialysis (CAPD). Clin Nephrol 1981; 15: 328–30.PubMedGoogle Scholar
  388. 387.
    Leak LV. Interaction of mesothelium to intraperitoneal stimulation. Lab Invest 1983; 48: 479–90.PubMedGoogle Scholar
  389. 388.
    Raftery AT. Regeneration of parietal and visceral peritoneum: an electron microscopical study. J Anat 1973; 115: 375–92.PubMedGoogle Scholar
  390. 389.
    Raftery AT. Mesothelial cells in peritoneal fluid. J Anat 1973; 115: 237–53.PubMedGoogle Scholar
  391. 390.
    Koss LG. Diagnostic Cytology and its Histopathologic Bases, 3rd edn. Philadelphia, PA: Lippincot, 1979, chs 16–25.Google Scholar
  392. 391.
    Ryan GB, Grobety J, Majno G. Postoperative peritoneal adhesions: a study of the mechanisms. Am J Pathol 1971; 65: 117–48.PubMedGoogle Scholar
  393. 392.
    Ryan GB, Grobety J, Majno G. Mesothelial injury and recovery. Am J Pathol 1973; 71: 93–112.PubMedGoogle Scholar
  394. 393.
    Di Paolo N, Sacchi G, De Mia M et al. Does dialysis modify the peritoneal structure? In: La Greca G, Chiaramonte S, Fabris A, Feriani M, Ronco G, eds. Peritoneal Dialysis, Milan: Wichtig Ed., 1956, pp. 11–24.Google Scholar
  395. 394.
    Dobbie JW, Zaki M, Wilson L. Ultrastructural studies on the peritoneum with special reference to chronic ambulatory peritoneal dialysis. Scot Med J 1981; 26: 213–23.PubMedGoogle Scholar
  396. 395.
    Verger G, Brunschvicg O, Le Charpentier Y, Lavergne A, Vantelon J. Structural and ultrastructural peritoneal membrane changes and permeability alterations during continuous ambulatory peritoneal dialysis. Proc EDTA 1981; 18: 199–205.Google Scholar
  397. 396.
    Susuki S, Enosawa S, Kakefuda T et al. A novel immunosuppressant, FTY720, with a unique mechanism of action, induces long-term graft acceptance in rat and dog allotransplantation. Transplantation 1996; 61: 200–5.Google Scholar
  398. 397.
    Nagata S. Fas-mediated apoptosis. Adv Exp Med Biol 1996; 406: 119–24.PubMedGoogle Scholar
  399. 398.
    Laster SM, Mackenzie JM Jr. Bleb formation and F-actin distribution during mitosis and tumor necrosis factor-induced apoptosis. Microsci Res Tech 1996; 34: 272–80.Google Scholar
  400. 399.
    Yang AH, Chen JY, Lin YP, Huang TP, Wu CW. Peritoneal dialysis solution induces apoptosis of mesothelial cells. Kidney Int 1997; 51: 1280–8.PubMedGoogle Scholar
  401. 400.
    Laiho KU, Trump BF. Mitochondria of Ehrlich ascites tumor cells. Lab Invest 1975; 32: 163–82.PubMedGoogle Scholar
  402. 401.
    Pentilla A, Trump BF. Studies on the modification of the cellular response to injury. III. Electron microscopic studies on the protective effect of acidosis on p-chloromercuribenzene sulfonic acid (PCMBS) induced injury of Ehrlich ascites tumor cells. Virchows Arch B Cell Pathol 1975; 18: 17–34.Google Scholar
  403. 402.
    Trump BF, Berezesky IK, Chang SH, Phelps PC. The pathways of cell death: oncosis, apoptosis, and necrosis. Toxicol Pathol 1997; 25: 82–8.PubMedGoogle Scholar
  404. 403.
    Dobbie JW, Anderson JD. Ultrastructure, distribution, and density of lamellar bodies in human peritoneum. Petit Dial Int 1996; 16: 488–96.Google Scholar
  405. 404.
    Slater ND, Cope GH, Raftery AT. Mesothelial hyperplasia in response to peritoneal dialysis fluid: a morphometric study in the rat. Nephron 1991; 58: 466–71.PubMedGoogle Scholar
  406. 405.
    Witowski J, Jorres A, Coles GA, Williams JD, Topley N. Superinduction of IL-6 synthesis in human peritoneal mesothelial cells is related to the induction and stabilization of IL-6 mRNA. Kidney Int 1996; 50: 1212–23.PubMedGoogle Scholar
  407. 406.
    Topley N, Williams JD. Effect of peritoneal dialysis on cytokine production by peritoneal cells. Blood Purif 1996; 14: 188–97.PubMedGoogle Scholar
  408. 407.
    Di Paolo N, Garosi G, Traversari L, Di Paolo M. Mesothelial biocompatibility of peritoneal dialysis solutions. Petit Dial Int 1993; 13 (suppl. 2): S109–12.Google Scholar
  409. 408.
    Breborowicz A, Rodela H, Oreopoulos DG. Toxicity of osmotic solutes on human mesothelial cells in vitro. Kidney Int 1992; 41: 1280–5.PubMedGoogle Scholar
  410. 409.
    Jorres A, Gabl GM, Topley N et al. In vitro biocompatibility of alternative CAPD fluids: comparison of bicarbonate-buffered and glucose-polymer-based solutions. Nephrol Dial Transplant 1994; 9: 785–90.PubMedGoogle Scholar
  411. 410.
    Shostak A, Pivnik K, Gotloib L. Daily short exposure of cultured mesothelial cells to lactated, high-glucose, low pH peritoneal dialysis fluid induces a low-profile regenerative steady state. Nephrol Dial Transplant 1996; 11: 608–13.PubMedGoogle Scholar
  412. 411.
    Topley N, Kaur D, Petersen MM et al. In vitro effects of bicarbonate and bicarbonate-lactate buffered peritoneal dialysis solutions on mesothelial and neutrophil function. J Am Soc Nephrol 1996; 7: 128–224.Google Scholar
  413. 412.
    Breborowicz A, Rodela H, Karon J, Martis L, Oreopoulos DG. In vitro stimulation of the effect of peritoneal dialysis solution on mesothelial cells. Am J Kidney Dis 1997; 29: 404–9.PubMedGoogle Scholar
  414. 413.
    Topley N. In vitro biocompatibility of bicarbonate-based peritoneal dialysis solutions. Petit Dial Int 1997; 17: 42–7.Google Scholar
  415. 414.
    Jorres A, Williams JD, Topley N. Peritoneal dialysis solution biocompatibility: inhibitory mechanisms and recent studies with bicarbonate-buffered solutions. Petit Dial Int 1997; 17 (suppl. 2): S42–6.Google Scholar
  416. 415.
    Di Paolo N, Garosi G, Monaci G, Brardi S. Biocompatibility of peritoneal dialysis treatment. Nephrol Dial Transplant 1997; 12 (suppl. 1): 78–83.PubMedGoogle Scholar
  417. 416.
    Holmes CJ. Peritoneal host defense mechanisms. Petit Dial Int 1996; 16 (suppl. 1): S124–5.Google Scholar
  418. 417.
    Zemel D, Krediet RT. Cytokine patterns in the effluent of continuous ambulatory peritoneal dialysis. Relationship to peritoneal permeability. Blood Purif 1996; 14: 198–216.PubMedGoogle Scholar
  419. 418.
    Topley N, Petersen MM, Mackenzie R et al. Human peritoneal mesothelial cell prostaglandin synthesis: induction of cyclooxygenase mRNA by peritoneal macrophage-derived cytokines. Kidney Int 1994; 46: 900–9.PubMedGoogle Scholar
  420. 419.
    Shostak A, Pivnik E, Gotloib L. Cultured rat mesothelial cells generate hydrogen peroxide: a new player in peritoneal defense? J Am Soc Nephrol 1996; 7: 2371–78.PubMedGoogle Scholar
  421. 420.
    Gotloib L. Large mesothelial cells in peritoneal dialysis: a sign of degeneration or adaptation? Petit Dial Int 1996; 16: 118–20.Google Scholar
  422. 421.
    Raftery AT. An enzyme histochemical study of mesothelial cells in rodents. J Anat 1973; 115: 365–73.PubMedGoogle Scholar
  423. 422.
    Whitaker D, Papadimitriou JM, Walters MN. The mesothelium; techniques for investigating the origin, nature and behaviour of mesothelial cells. J Pathol 1980; 132, 263–71.PubMedGoogle Scholar
  424. 423.
    Gotloib L, Shostak A, Wajsbrot V, Kushnier R. The cytochemical profile of visceral mesothelium under the influence of lactated-hyperosmolar peritoneal dialysis solutions. Nephron 1995; 69: 466–71.PubMedGoogle Scholar
  425. 424.
    Gotloib L, Wajsbrot V, Shostak A, Kushnier R. Morphology of the peritoneum: effect of peritoneal dialysis. Petit Dial Int 1995; 15 (suppl.): S9–11.Google Scholar
  426. 425.
    Di Paolo N, Garosi G, Petrini G, Monaci G. Morphological and morphometric changes in mesothelial cells during peritoneal dialysis in the rabbit. Nephron 1996; 74: 594–9.PubMedGoogle Scholar
  427. 426.
    Gotloib L, Wajsbrot V, Shostak A, Kushnier R. Effect of hyperosmolality upon the mesothelial monolayer exposed in-vivo and in-situ to a mannitol enriched dialysis solution. Nephron 1999; 81: 301–9.PubMedGoogle Scholar
  428. 427.
    Wajsbrot V, Shostak A, Gotloib L, Kushnier R. Biocompatibility of a glucose-free, acidic lactated solution for peritoneal dialysis evaluated by population analysis of mesothelium. Nephron 1998; 79, 322–32.PubMedGoogle Scholar
  429. 428.
    Walters WB, Buck RC. Mitotic activity of peritoneum in contact with a regenerative area of peritoneum. Virchows Arch B Zellpathol 1973; 13, 48–52.Google Scholar
  430. 429.
    Gotloib L, Shostak A, Wajsbrot V, Kushnier R. High glucose induces an hypertrophie, senescent mesothelial cell phenotype after long, in vivo exposure. Nephron 1999; 82: 164–7.PubMedGoogle Scholar
  431. 430.
    Vincent F, Brun H, Clain E, Ronot X, Adolphe M. Effects of oxygen free radicals on proliferation kinetics of cultured rabbit articular chondrocytes. J Cell Physiol 1989; 141: 262–6.PubMedGoogle Scholar
  432. 431.
    De Bono DP, Yang WD. Exposure to low concentrations of hydrogen peroxide causes delayed endothelial cell death and inhibits proliferation of surviving cells. Atherosclerosis 1995; 114: 235–45.PubMedGoogle Scholar
  433. 432.
    Bladier G, Wolvetang EJ, Hutchinson P, De Haan JB, Kola I. Response of a primary human fibroblast cell line to H2O2: senescence-like growth arrest or apoptosis? Cell Growth Difer 1997; 8: 589–98.Google Scholar
  434. 433.
    Nicotera P, Dypbukt JM, Rossi AD, Manzo L, Orrenius S. Thiol modification and cell signalling in chemical toxicity. Toxicol Lett 1992; 64–5 (Spec No.): 563–7.Google Scholar
  435. 434.
    Dypbukt JM, Ankarcrona M, Burkitt M et al. Different pro-oxidant levels stimulate growth, trigger apoptosis, or produce necrosis of insulin-secreting RINmSF cells. The role of intracellular polyamines. J Biol Chem 1994; 269: 30553–60.PubMedGoogle Scholar
  436. 435.
    Orrenius S, Burkitt MJ, Kass GE, Dypbukt JM, Nicotera P. Calcium ions and oxidative cell injury. Ann Neurol 1992; 32 (suppl.): S33–42.PubMedGoogle Scholar
  437. 436.
    Curcio F, Ceriello A. Decreased cultured endothelial cell proliferation in high glucose medium is reversed by antioxidants: new insights on the pathophysiological mechanisms of diabetic vascular complications in Vitro. Cell Dev Biol 1992; 28A: 787–90.Google Scholar
  438. 437.
    Kashiwagi A, Asahina T, Ikebuchi M et al. Abnormal glutathione metabolism and increased cytotoxicity caused by H2O2 in human umbilical vein endothelial cells cultured in high glucose medium. Diabetologia 1994; 37: 264–9.PubMedGoogle Scholar
  439. 438.
    Breborowicz A, Witowski J, Wieczorowska K, Martis L, Serkes KD, Oreopoulos DG. Toxicity of free radicals to mesothelial cells and peritoneal membrane. Nephron 1993; 65: 62–6.PubMedGoogle Scholar
  440. 439.
    Donnini D, Zambito AM, Perrella G, Ambesi-Impiombato FS, Curcio F. Glucose may induce cell death through a free radical-mediated mechanism. Biochem Biophys Res Commun 1996; 219: 412–7.PubMedGoogle Scholar
  441. 440.
    Kashwem A, Nomoto Y, Tanabe R et al. The effect of dialysate glucose on phagocyte superoxide generation in CAPD patients. Petit Dial Int 1998; 18: 52–9.Google Scholar
  442. 441.
    Elgawish A, Glomb M, Friedlander M, Monnier VM. Involvement of hydrogen peroxide in collagen cross-linking by high glucose in vitro and in vivo. J Biol Chem 1996; 272: 12964–71.Google Scholar
  443. 442.
    Friedlander MA, Wu YC, Elgawish A, Monnier VM. Early and advanced glycosylation end products. Kinetics of formation and clearance in peritoneal dialysis. J Clin Invest 1996; 97: 728–35.PubMedGoogle Scholar
  444. 443.
    Dobbie JW, Anderson JD, Hind G. Long-term effects on peritoneal dialysis on peritoneal morphology. Petit Dial Int 1994; 14 (suppl. 3): S14–20.Google Scholar
  445. 444.
    Dobbie JW: Pathogenesis of peritoneal fibrosing syndromes (sclerosing peritonitis) in peritoneal dialysis. Petit Dial Int 1992; 12: 14–27.Google Scholar
  446. 445.
    Verger G, Celicout B, Larpent L, Goupil A. Encapsulating peritonitis during continuous ambulatory peritoneal dialysis. A physiopathologie hypothesis. Presse Med 1986; 15: 1311–4.PubMedGoogle Scholar
  447. 446.
    Gandhi VC, Humayun HM, Ing TS et al. Sclerotic thickening of the peritoneal membrane in maintenance peritoneal dialysis patients. Arch Intern Med 1980; 140: 1201–3.PubMedGoogle Scholar
  448. 447.
    Slingeneyer A, Mion G, Mourad G, Canaud B, Faller B, Beraud JJ. Progressive sclerosing peritonitis: a late and severe complication of maintenance peritoneal dialysis. Trans Am Soc Artif Intern Organs 1983; 29: 633–40.PubMedGoogle Scholar
  449. 448.
    Foo KT, Ng-Kc, Rauff A, Foong WC, Sinniah R. Unusual small intestinal obstruction in adolescent girls: the abdominal cocoon. Br J Surg 1978; 65: 427–30.PubMedGoogle Scholar
  450. 449.
    Lee RE, Baddeley H, Marshall AJ, Read AE. Practolol peritonitis. Clin Radio] 1977; 28: 119–28.Google Scholar
  451. 450.
    Harty RF. Sclerosing peritonitis and propranolol. Arch Intern Med. 1978; 138: 1424–6.PubMedGoogle Scholar
  452. 451.
    Baxter-Smith DC, Monypenny IJ, Dorricott NJ. Sclerosing peritonitis in patient on timolol. Lancet 1978; 2: 149.PubMedGoogle Scholar
  453. 452.
    Clarck CV, Terris R. Sclerosing peritonitis associated with metoprolol. Lancet 1983; 1: 937.Google Scholar
  454. 453.
    Phillips RK, Dudley HA. The effect of tetracycline lavage and trauma on visceral and parietal peritoneal ultrastructure and adhesion formation. Br J Surg 1984; 71: 537–9.PubMedGoogle Scholar
  455. 454.
    Di Paolo N, Di Paolo M, Tanganelli P, Brardi S, Bruci A. Technique nefrologiche e dialitici. Perugia: Bios Editore, 1988, p. 5.Google Scholar
  456. 455.
    Myhre-Jensen O, Bergmann Larsen S, Astrup T. Fibrinolytic activity in serosal and synovial membranes. Rats, guinea pigs and rabbits. Arch Pathol 1969; 88: 623–30.Google Scholar
  457. 456.
    Gervin AS, Puckett ChL, Silver D. Serosal hypofibrinolysis. A cause of postoperative adhesions. Am J Surg 1973; 1225: 80–8.Google Scholar
  458. 457.
    Buckman RF, Woods M, Sargent L, Gervin AS. A unifying pathogenetic mechanism in the etiology of intraperitoneal adhesions. J Surg Res 1976; 20: 1–5.PubMedGoogle Scholar
  459. 458.
    Gotloib L, Shostak A, Bar-Sella P, Cohen R. Continuous mesothelial injury and regeneration during long term peritoneal dialysis. Perit Dial Bull 1987; 7: 148–55.Google Scholar
  460. 459.
    Gotloib L, Wajsbrot V, Shostak A, Kushnier R. Experimental approach to peritoneal morphology. Perit Dial Int 1994; 14 (suppl. 3): S6–11.PubMedGoogle Scholar
  461. 460.
    Honda K, Nitta K, Horita S, Yumura W, Nihei H. Morphological changes in the peritoneal vasculature of patients on CAPD with ultrafiltration failure. Nephron 1996; 72: 171–6.PubMedGoogle Scholar
  462. 461.
    Eskeland G, Kjaerheim A. Regeneration of parietal peritoneum in rats. 2. An electron microscopical study. Acta Pathol Microbiol Scand 1966; 68, 379–95.PubMedGoogle Scholar
  463. 462.
    Watters WB, Buck RC. Scanning electron microscopy of mesothelial regeneration in the rat. Lab Invest 1972; 26: 604–9.PubMedGoogle Scholar
  464. 463.
    Whitaker D, Papadimitriou J. Mesothelial healing: morphological and kinetic investigations. J Pathol Bac 1957; 73: 1–10.Google Scholar
  465. 464.
    Renvall SY. Peritoneal metabolism and intrabdominal adhesion formation during experimental peritonitis. Acta Chirurg Scand Suppl 1980; 503: 1–48.Google Scholar
  466. 465.
    Ellis H, Harrison W, Hugh TB. The healing of peritoneum under normal and pathological conditions. Br J Surg 1965; 52: 471–6.PubMedGoogle Scholar
  467. 466.
    Ellis H. The cause and prevention of postoperative intraperitoneal adhesions. Surg Gynecol Obstet 1971; 133: 497–511.PubMedGoogle Scholar
  468. 467.
    Whitaker D, Papadimitriou J. Mesothelial healing: morphological and kinetic investigations. J Pathol 1985; 145: 159–75.PubMedGoogle Scholar
  469. 468.
    Cameron GR, Hassan SM, De SN. Repair of Glisson’s capsule after tangential wounds on the liver. J Pathol Bacteriol 1957; 73: 1–10.Google Scholar
  470. 469.
    Johnson FR, Whitting HW. Repair of parietal peritoneum. Br J Surg 1962; 49, 653–60.PubMedGoogle Scholar
  471. 470.
    Eskeland G. Regeneration of parietal peritoneum in rats. A light microscopical study. Acta Pathol Microbiol Scand 1966; 68: 355–78.PubMedGoogle Scholar
  472. 471.
    Williams DC. The peritoneum. A plea for a change in attitude towards this membrane. Br J Surg 42: 1955; 401–5.PubMedGoogle Scholar
  473. 472.
    Shaldon S. Peritoneal macrophage: the first line of defense. In: La Greca G, Chiaramonte S, Fabris A, Feriani M, Ronco G, eds. Peritoneal Dialysis. Milan: Wichtig. Ed., 1986, p. 201.Google Scholar
  474. 473.
    Raftery AT. Regeneration of parietal and visceral peritoneum. A light microscopical study. Brit J Surgery 1973; 60: 293–9.Google Scholar
  475. 474.
    Maximow AA, Bloom W. A Textbook of Histology. Philadelphia, PA: Saunders, 1942, pp. 63–66.Google Scholar
  476. 475.
    Gonzales S, Friemann J, Muller KM, Pott F. Ultrastructure of mesothelial regeneration after intraperitoneal injection of asbestos fibres on rat omentum. Pathol Res Pract 1991; 187: 931–5.Google Scholar
  477. 476.
    Watters WB, Buck RC. Mitotic activity of peritoneum in contact with a regenerating area of peritoneum. Virchows Arch B Cell Pathol 1973; 13: 48–54.PubMedGoogle Scholar
  478. 477.
    Mironov VA, Gusev SA, Baradi AF. Mesothelial stomata overlying omental milky spots: scanning electron microscopic study. Cell Tissue Res 1979; 201, 327–30.PubMedGoogle Scholar
  479. 478.
    Doherty NS, Griffiths RJ, Hakkinen JP, Scampoli DN, Milici AJ. Post-capillary venules in the `milky spots’ of the greater omentum are the major site of plasma protein and leukocyte extravasation in rodent models of peritonitis. Inflamm Res 1995; 44: 169–77.PubMedGoogle Scholar
  480. 479.
    Fukatsu K, Saito H, Han I. et al. The greater omentum is the primary site of neutrophil exudation in peritonitis. J Am Coll Surg 1996; 183: 450–6.PubMedGoogle Scholar
  481. 480.
    Krist LF, Eestermans IL, Steenbergen JJ. Cellular composition of milky spots in the human greater omentum: an immunochemical and ultrastructural study. Anat Rec 1995; 241: 163–74.PubMedGoogle Scholar
  482. 481.
    Leypoldt JK. Evaluation of peritoneal membrane pore models. Blood Purif 1992; 10: 227–38.PubMedGoogle Scholar
  483. 482.
    Gotloib L, Oreopoulos DG. Transfer across the peritoneum: passive or active? Nephron 1981; 29: 201–2.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • L. Gotloib
  • A. Shostak
  • V. Wajsbrot

There are no affiliations available

Personalised recommendations