Skip to main content

Early Fossil History of the Termites

  • Chapter

Abstract

All Mesozoic records of termites are from the Cretaceous and are of the families Hodotermitidae, Termopsidae, and possibly the Mastotermitidae. All known fossil Isoptera from the Cretaceous, including described and undescribed specimens, have distinctly primitive wing venation and, to the extent that can be evaluated, primitive morphology of other body regions. Thus termites were primitive but reasonably diversified in the Cretaceous, suggesting an origin in the Upper Jurassic, but probably not earlier. The geographic range of known Mesozoic termite fossils includes Europe, Asia, and North and South America, indicating a broad Pangean distribution and both temperate and tropical habitats. We suggest that the driving forces behind modern termite distributions were not early evolution and continental drift, but rather an explosive Tertiary radiation followed by broad and rapid dispersal as termites became ecologically dominant consumers. Relict distributions of modem Mastotermitidae, Hodotermitidae, and Termopsidae, the origin and the radiation of social insects are discussed.

Key words

  • Dictyopteran phylogeny
  • Mesozoic fossil termites
  • Cretaceous Isoptera
  • Mastotermitidae
  • Termopsidae
  • Hodotermitidae.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-017-3223-9_4
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   74.99
Price excludes VAT (USA)
  • ISBN: 978-94-017-3223-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agosti, D., Grimaldi, D.A. and Carpenter, J.M. (1997) Oldest known ant fossils discovered. Nature 391, 447.

    CrossRef  Google Scholar 

  2. Austin, J.J. et al. (1997) Problems of reproducibility -does geologically ancient DNA survive in amber-preserved insects? Proceedings of the Royal Society, Biological Science. 1381, 467–474.

    CrossRef  Google Scholar 

  3. Baccetti, B. and Dallai, R. (1977) Sur le premier spermatozoide multiflagellé du règne animale découvert chez Mastotermes darwiniensis. Comptes Rendus de l’Academie des Sciences, Paris 285, 785–788.

    Google Scholar 

  4. Baccetti, B. and Dallai, R. (1978) The spermatozoon of Arthropoda. XXX. The multiflagellate spermatozoon in the termite Mastotermes darwiniensis. Journal of Cell Biology 76, 569–576.

    CAS  CrossRef  Google Scholar 

  5. Boudreaux, H.B. (1979) Arthropod Phylogeny with Special Reference to Insects. John Wiley and Sons, New York.

    Google Scholar 

  6. Browman, L.G. (1935) The chitinous structures in the posterior abdominal segments of certain female termites. Journal of Morphology 57, 113–129.

    CrossRef  Google Scholar 

  7. Brundin, L. (1966) Transantarctic relationships and their significance, as evidenced by chironomid midges, with a monograph of the subfamilies Podonominae and Aphroteniinae and the Austral Heptagyiae. Kungliga Svenska Vetenskapskad. Handlingar 11, 472 pp.

    Google Scholar 

  8. Bush, A.B.G. (1997) Numerical simulation of the Cretaceous Tethys circumglobal current. Science 275, 807–810.

    CAS  PubMed  CrossRef  Google Scholar 

  9. Carpenter, F.M. and Rasnitsyn, A.P. (1990) Mesozoic Vespidae. Psyche 97, 1–10.

    CrossRef  Google Scholar 

  10. Collins, R.L. (1925) A lower eocene termite from Tennessee. American Journal of Science 9, 406–410.

    CrossRef  Google Scholar 

  11. Crampton, G.C. (1920) The terminal abdominal structures of the primitive Australian termite Mastotermes darwiniensis Froggatt. Royal Entomological Society of London Transactions 1920, 137–145.

    Google Scholar 

  12. Crampton, G.C. (1923) A comparison of the terminal abdominal structures of an adult alate female of the primitive termite Mastotermes darwiniensis with those of the roach Periplaneta americana. Brooklyn Entomological Society Bulletin 18, 85–93.

    Google Scholar 

  13. Crane, P.R., Friis, E.M. and Pedersen, K.R. (1995) The origin and early diversification of angiosperms. Nature 374, 27–33.

    CAS  CrossRef  Google Scholar 

  14. Crane, P.R. and Lidgard, S. (1990) Angiosperm radiation and patterns of Cretaceous palynological diversity. In Major Evolutionary Radiations. (P.D. Taylor and G.P. Larwood, Eds.), pp. 377–407, Systematics Association Special Volume 42. Clarendon Press, Oxford.

    Google Scholar 

  15. DeSalle, R., et al. (1992) DNA sequences from a fossil termite in Oligo-miocene amber and their phylogenetic implications. Science 257, 1933–1936.

    Google Scholar 

  16. Dorf, E. (1967) Cretaceous insects from Labrador. I. Geologic occurrence. Psyche 74, 267–269.

    Google Scholar 

  17. Emerson, A.E. (1933) Revision of the genera of fossil and recent Tennopsinae (Isoptera). University of California Publications in Entomology 6, 165–195.

    Google Scholar 

  18. Emerson, A.E. (1942) The relations of a relict South African termite (Isoptera, Hodotermitidae, Stolotermes). American Museum Novitates 1187, 1–12.

    Google Scholar 

  19. Emerson, A.E. (1952) The biogeography of termites. Bulletin of the American Museum of Natural History 99, 217–225.

    Google Scholar 

  20. Emerson, A.E. (1955) Geographical origins and dispersions of termite genera. Fieldiana: Zoology 37, 465–521.

    Google Scholar 

  21. Emerson, A.E. (1965) A review of the Mastotermitidae (Isoptera), including a new fossil genus from Brazil. American Museum Novitates 2236, 1–46.

    Google Scholar 

  22. Emerson, A.E. (1967) Cretaceous insects from Labrador 3. A new genus and species of termite (Isoptera: Hodotermitidae). Psyche 74, 276–289.

    CrossRef  Google Scholar 

  23. Emerson, A.E. (1968) A revision of the fossil genus Ulmeriella (Isoptera, Hodotermitidae, Hodotermitinae). American Museum Novitates 2332, 22 pp.

    Google Scholar 

  24. Emerson, A.E. (1971) Tertiary fossil species of the Rhinotermitidae (Isoptera), Phylogeny of genera, and reciprocal phylogeny of associated flagellata (Protozoa) and the Staphylinidae (Coleoptera). Bulletin of the American Museum of Natural History 1436, 245–303.

    Google Scholar 

  25. Emerson, A.E. and Krishna, K. (1975) The termite family Serritermitidae (Isoptera). American Museum Novitates 2570, 31 pp.

    Google Scholar 

  26. Fujiyama, I. (1983) Neogene termites from northeastern districts of Japan, with references to the occurence of fossil insects in the districts. Memoirs of the National Science Museum, Tokyo 16, 83–98.

    Google Scholar 

  27. Gay, F.J. and Calaby, J.H. (1970) Termites of the Australian Region. In Biology of Termites, Volume II. (K.Krishna and F.M. Weesner, Eds.), pp. 393–448, Academic Press, New York.

    Google Scholar 

  28. Geyer, J.W.C. (1951) The reproductive organs of certain termites, with notes on the hermaphrodites of Neotermes. Entomological Memoirs of the Department of Agriculture, South Africa 2, 233–325.

    Google Scholar 

  29. Grandcolas, P. (1996) The phylogeny of cockroach families: a cladistic appraisal of morpho-anatomical data. Canadian Journal of Zoology 74, 508–527.

    CrossRef  Google Scholar 

  30. Grassé, P.P. (1949) Termites. Isoptères. Traité de Zoologie 9, 408–544.

    Google Scholar 

  31. Gratshev. V.G. and Zherikhin, V V (1994) New fossil mantids (Insecta, Mantida [sic]). Paleontological Journal 27, 148–165.

    Google Scholar 

  32. Grimaldi, D.A. (1992) Vicariance biogeography, geographic extinctions, and the North American Oligocene tsetse flies. In Extinction and Phylogeny ( M.J. Novacek and Q.D. Wheeler, Eds.), pp. 178–204, Columbia University Press, New York.

    Google Scholar 

  33. Grimaldi, D.A. (1996) Amber. Window to the Past. Abrams I American Museum of Natural History, New York.

    Google Scholar 

  34. Grimaldi, D.A. (1997) A fossil mantis (Insecta: Mantodea) in Cretaceous amber of New Jersey, with comments on the early history of the Dictyoptera. American Museum Novitates, 3204, 1–11.

    Google Scholar 

  35. Grimaldi, D.A. (1999) Co-radiations of pollinating insects and angiosperms in the Cretaceous. Annals of the Missouri Botanical Garden 86, 373–406.

    CrossRef  Google Scholar 

  36. Grimaldi, D.A., Agosti, D. and Carpenter, J.M. (1997) New and rediscovered primitive ants (Hymenoptera: Formicidae) in Cretaceous amber from New Jersey, and their phylogenetic relationships. American Museum Novitates 3208, 1–43.

    Google Scholar 

  37. Hasiotis, S.T. and Dubiel, R.F. (1993) Continental trace fossils of the Upper Triassic Chinle Formation, Petrified Forest National Park, Arizona. In The Nonmarine Triassic. (S.G. Lucas and M. Morales, Eds.), pp. 175–178, New Mexico Museum of Natural History Science Bulletin 3.

    Google Scholar 

  38. Hasiotis, S.T. and Dubiel, R.F. (1995) Termite (Insecta: Isoptera) nest ichnofossils from the Upper Triassic Chinle Formation, Petrified Forest National Park, Arizona. Ichnos 4, 119–130.

    CrossRef  Google Scholar 

  39. Heer, O. (1849) Die Insektenfauna der Tertiärgebilde von (Eningen und von Radoboj in Croatien. Zweite Abtheilung: Heuschrecken, Fhorfliegen, Aderflügher, Schmetterlinge und Fliegen. pp. 1–264., W. Engelmann, Leipzig.

    Google Scholar 

  40. Hennig, W. (1969) Die Stammesgeschichte der Insekten. Hrsg. von der Senckenbergischen Naturforschenden Gesellschaft zu Frankfurt am Main. Frankfurt am Main, Kramer. SenckenbergBuch 49, 436 pp.

    Google Scholar 

  41. Hennig, W. (1981) Insect Phylogeny (translated and edited by A.C. Pont, with revisionary notes by D. Schlee). John Wiley and Sons, New York.

    Google Scholar 

  42. Hopkins, D.M. (1967) The Cenozoic history of Beringia–a synthesis. In The Bering Land Bridge ( D.M. Hopkins, Ed.), pp. 451–484, Stanford University Press, California.

    Google Scholar 

  43. Imms, A.D. (1919) On the structure and biology of Archotermopsis, together with descriptions of new species of intestinal protozoa and general observations on the Isoptera. Philosophical Transactions of the Royal Society of London 209, 75–180.

    Google Scholar 

  44. Jarzembowski, E.A. (1980) Fossil insects from the Bembridge marls, Paleogene of the isles of Wight. Bulletin of the British Museum of Natural History, A, Geology 33, 237–293.

    Google Scholar 

  45. Jarzembowski, E.A. (1981) An early Cretaceous termite from southern England (Isoptera: Hodotermitidae). Systematic Entomology 6, 91–96.

    CrossRef  Google Scholar 

  46. Jarzembowski, E.A. (1984) Early Cretaceous insects from southern England. Modern Geology 9, 71–93.

    Google Scholar 

  47. Jarzembowski, E.A. (1991) New insects from the Weald Clay of the Weald. Proceedings of the Geological Association 102, 93–108.

    CrossRef  Google Scholar 

  48. Jarzembowski, E.A. (1994) Fossil cockroaches or pinnule insects? Proceedings of the Geological Association 105, 305–311.

    CrossRef  Google Scholar 

  49. Kambhampati, S. (1995) A phylogeny of cockroaches and related insects based on DNA sequence of mitochondrial ribosomal RNA genes. Proceedings of the National Academy of Sciences 92, 2017–2020.

    CAS  CrossRef  Google Scholar 

  50. Kambhampati, S. (1996) Phylogenetic relationship among cockroach families inferred from mitochondrial 12S rRNA gene sequences. Systematic Entomology 21, 89–98.

    Google Scholar 

  51. Klass, K-D. (1997/98) The ovipositor of Dictyoptera (Insecta): Homology and ground-plan of the main elements. Zoologischer Anzeiger 236, 69–101.

    Google Scholar 

  52. Krishna, K. (1990). Isoptera. In: Insects from the Sanatana Formation, Lower Cretaceous, Brazil. (Grimaldi, D.A. Ed.) Bulletin of the American Museum of Natural History 195, 76–81.

    Google Scholar 

  53. Krishna, K. (1996) New fossil species of termites of the subfamily Nasutitermitinae from Dominican and Mexican amber (Isoptera, Termitidae). American Museum Novitates 3176, 1–13.

    Google Scholar 

  54. Krishna, K. and Emerson, A.E. (1983) A new fossil species of termite from Mexican amber, Mastotermes electromexicus (Isotpera, Mastotermitidae). American Museum Novitates 2767, 1–8.

    Google Scholar 

  55. Krishna, K. and Grimaldi, D. (1991) A new fossil species from Dominican amber of the living Australian termite genus Mastotermes (Isoptera, Mastotermitidae). American Museum Novitates 3021, 1–10.

    Google Scholar 

  56. Krishna, K. and Grimaldi, D. (2000) A new subfamily, genus, and species of Termite (Isoptera) from New Jersey Cretaceous amber. Bulletin of the American Museum of Natural History,in press.

    Google Scholar 

  57. Kristensen, N.P. (1975) The phylogeny of hexapod “orders”. A critical review of recent accounts. Zeitschrift für Zoologische Systematik and Evolutionsforchung 13, 1–44.

    CrossRef  Google Scholar 

  58. Kristensen, N.P. (1991) Phylogeny of extant hexapods. In The Insects of Australia, 2nd Edition (CSIRO Ed.), pp. 125–140, Melbourne University Press, Carlton, Victoria.

    Google Scholar 

  59. Kristensen, N.P. (1995) Forty years’ insect phylogenetic systematics. Zoologische Beiträge 36, 83–124.

    Google Scholar 

  60. Kukalova-Peck, J. (1991) Fossil history and the evolution of hexapod structures. In The Insects of Australia, 2nd Edition (CSIRO Ed.), pp. 141–179, Melbourne University Press, Carlton, Victoria.

    Google Scholar 

  61. Labandeira, C.C. and Sepkoski, J.J. Jr. (1993) Insect diversity in the fossil record. Science 261, 310–315.

    CrossRef  Google Scholar 

  62. Lacasa-Ruiz, A. and Martinez-Delclòs, X. (1986) Meiatermes: Nuevo género fosil de insecto Isoptero (Hodotermitidae) de las calizas Neocomienses del Montsec (Provincia de Lérida, Espana). Publicaciones Institut d’Estidis Ilerdencs, Diputacion provincial de Lleida 5–65.

    Google Scholar 

  63. Laurentiaux, D. (1951) Le problème des blattes paléozoiques a ovipositeur externe. Annales de Paleontologie 37, 187–194.

    Google Scholar 

  64. Lidgard, S. and Crane, P.R. (1988) Quantitative analyses of the early angiosperm radiation. Nature 331, 344–346.

    Google Scholar 

  65. Light, S.F. (1934) The constitution and development of the termite colony. In Termites and Termite Control, 2nd Edition ( C.A. Kofoid, Ed.), pp. 22–41, University of California Press, Berkeley, California.

    Google Scholar 

  66. Marks, E. and Lawson, F.A. (1962) A comparative study of the dictyopteran ovipositor. Journal of Morphology 111, 139–172.

    CrossRef  Google Scholar 

  67. Martinez-Delclòs, X. and Martinell, J. (1995) The oldest known record of fossil insects. Journal of Paleontology 69, 594–599.

    Google Scholar 

  68. Martynov, A.B. (1937) Wings of termites and phylogeny of Isoptera and of allied groups of insects. Academie des Sciences de l’URSS’, N.Y. Nassonov volume jubilaire, 83–150, Moscow.

    Google Scholar 

  69. Martynov, A.B. (1938) Ocherki geologicheskoi istorii i filogenii otryadov nasekomyh (Pterygota). Trudy Paleontologicheskogo Instituta,7(4), 1–149. [Studies in the geological history and phylogeny of the insect orders (Pterygota), Part I. Paleoptera and Neoptera - Polyneoptera].

    Google Scholar 

  70. Matsumoto, T. and Hirono, Y. (1985) On the caste composition of a primitive termite Hodotermopsis japonicus Holmgren (Isoptera, Termopsidae). Scientific Papers of the College of Arts and Sciences, The University of Tokyo 33, 211–216.

    Google Scholar 

  71. McKittrick, F.A. (1964) Evolutionary studies of cockroaches. Cornell University, Agricultural Experiment Station Memoirs 389, 1–197.

    Google Scholar 

  72. Michener, C.D. and Grimaldi, D.A. (1988) A Trigona from Late Cretaceous amber of New Jersey (Hymenoptera: Apidae: Meliponinae). American Museum Novitates 2917, 1–10.

    Google Scholar 

  73. Michener, C.D. and Grimaldi, D.A. (1988) The oldest fossil bee: apoid evolutionary stasis, and the antiquity of social behavior. Proceedings of the National Academy of Science, USA 85, 6424–6426.

    Google Scholar 

  74. Moore, B.P. (1968) Studies on the chemical composition and function of the cephalic gland secretion in Australian termites. Journal of Insect Physiology 14, 33–39.

    CAS  CrossRef  Google Scholar 

  75. Nalepa, C.A. (1991) Ancestral transfer of symbionts between cockroaches and termites: an unlikely scenario. Proceedings of the Royal Society, Series B 246, 185–189.

    CAS  CrossRef  Google Scholar 

  76. Nel, R.J. (1929) Studies on the development of the genitalia and the genital ducts in insects. L Female of Orthoptera and Dermaptera. Quarterly Journal of Microscopical Science 73, 25–85.

    Google Scholar 

  77. Nel, A. (1986) Sur trois espèces nouvelles de termites fossiles du Stampien d“aix-en-Provence (Bouches-du-Rhône) (Dictyoptera, Hodotermitidae, Mastotermitidae). L’Entomologiste 42, 271–278.

    Google Scholar 

  78. Nel, A. and Paicheler, J-C. (1993) Les Isoptera fossils. Etat actuel des connaissances, implications paléoécologiques et paléoclimatologiques [Insecta, Dictyoptera]. 179 pp, CNRS Editions, Paris.

    Google Scholar 

  79. Noirot, C. and Pasteels, J.M. (1987) Ontogenetic development and evolution of the worker caste in termites. Experientia 43, 851–952.

    CrossRef  Google Scholar 

  80. Pielou, E.C. (1979) Biogeography. John Wiley and Sons, New York.

    Google Scholar 

  81. Pike, E.M. (1995) Amber Taphonomy and the Grassy Lake, Alberta, Amber Fauna. Ph.D. Dissertation, University of Calgary, Canada.

    Google Scholar 

  82. Ponomarenko, A.G. (1988) New Cretaceous Isoptera. In: New species of fossil invertebrates of Mongolia. The joint Soviet Mongolian paleontological expedition, Transactions 33, pp. 71–72. Academy of Sciences, USSR: Nauka Press [in Russian].

    Google Scholar 

  83. Ranitsyn, A. (1975) Hymenoptera Aprocrita of the Mesozoic. Trudy Paleontologicheskogo Instituta AkademiyaNaukSSSR 147, 1–132. [in Russian]

    Google Scholar 

  84. Ren, D. (1995) Insects. In Faunae and Stratigraphy of Jurassic-Cretaceous in Bejing and the Adjacent Areas, pp. 54–197, Geological Publishing House, Beijing.

    Google Scholar 

  85. Riek, E.F. (1952) Fossil insects from the tertiary sediments at Dinmore, Queensland. University of Queensland Papers, Department of Geology 4(N.S.) 1–2, 17–21.

    Google Scholar 

  86. Roonwal, M.L., Bose, G. and Verma, S.C. 1984. The Himalayan termite, Archotermopsis wroughtoni (syonyms radcliffei and deodarae). Identity, distribution and biology. Records of the Zoological Survey of India, Delhi 81: 315–338.

    Google Scholar 

  87. Schlee, D. (1972) Bernstein aus dem Libanon. Kosmos 68, 460–463.

    Google Scholar 

  88. Schlee, D. and Dietrich, H-G. (1970) Insektenführender Bernstein aus der Unterkreide des Libanon. Neues Jahrbuch Geologisches Palaontologisches, Monatshefte 1970, 40–50.

    Google Scholar 

  89. Schlee, D. and Glöckner, W. (1978) Bernstein. Bernstein and Bernstein-Fossilien. Stuttgarter Beitreige fur Naturkunde, (C), 8, 1–72.

    Google Scholar 

  90. Schlüter, T. (1989) Neue Daten über harkkonservierte Arthropoden aus dem Cenomanium NW-Frankreichs. Documenta naturae, München. 56, 59–70.

    Google Scholar 

  91. Smith, A., Smith, D. and Funnell, B. (1994) An Atlas of Mesozoic and Cenozoic Coastlines. Cambridge University Press, United Kingdom.

    Google Scholar 

  92. Thorne, B.L. and Carpenter, J.M. (1992) Phylogeny of the Dictyoptera. Systematic Entomology 17, 253–268.

    CrossRef  Google Scholar 

  93. Thome, B.L. et al. (1993) Distribution and biogeography of the North American termite genus Zootermopsis (Isoptera: Termopsidae). Annals of the Entomological Society of America 86, 532–544.

    Google Scholar 

  94. Tiffney, B.H. 1994. An estimate of the Early Tertiary paleoclimate of the southern Arctic. In Cenozoic Plants and Climates of the Arctic, ( M.C. Boulter and H.C. Fisher, Eds.), pp. 267–295, Springer-Verlag, Berlin.

    CrossRef  Google Scholar 

  95. Vishniakova, V.H. (1968) Mezozojskie tarakany s naruzhnym yajtekladom i osobennosti ikh razmnozheniya (Blattodea). In Yurskie Nasekomye Karatau ( 95.Vishniakova, V.H Ed.), pp. 55–86, Akademie Nauk SSSR Otdelenie Obstachej Biologii (Moscow). [Mesozoic blattids with external ovipositor, and peculiarities of their reproduction in Jurassic insects of Karatau].

    Google Scholar 

  96. Vishniakova, V.H. (1971) Stroenie pridatkov bryushka mezozojskikh taradanov (Insecta: Blattodea): in Sovremennye Problemy Paleontologii. Trudy Paleontologischeskogo Instituta Akademiya Nauk SSSR 130, 174–186. [The structure of the abdominal appendages of Mesozoic cockroaches. In Current Problems of Paleontology].

    Google Scholar 

  97. Walden, K.K.O. and Robertson, H.M. (1997) Ancient DNA from amber fossil bees? Molecular Biology and Evolution 14, 1075–1077.

    CAS  PubMed  CrossRef  Google Scholar 

  98. Watson, J.A.L. and Gay, F.J. (1991). Isoptera. In The Insects of Australia, 2nd Edition (CSIRO, Ed.), pp. 330–347, Melbourne University Press, Carlton, Victoria.

    Google Scholar 

  99. Wenzel, J.W. (1990) A social wasp’s nest from the Cretaceous Period, Utah, USA, and its biological importance. Psyche 97, 21–29.

    CrossRef  Google Scholar 

  100. Wheeler, W.C. (1992) Extinction, sampling, and molecular phylogenetics. In Extinction and Phylogeny ( M.J. Novacekand Q.D. Wheeler, Eds.), pp. 205–215, Columbia University Press, New York.

    Google Scholar 

  101. Wheeler, W.C. et al. 1999. The phylogeny of the extant hexapod orders. Systematic Biology, submitted. 102.Wilson, E.O. (1985) The sociogenesis of insect colonies. Science 228, 1489–1495.

    Google Scholar 

  102. Wilson, E.O. (1987) The earliest known ants-an analysis of the Cretaceous species and an inference concerning their social organization. Paleobiology 13, 44–53.

    Google Scholar 

  103. Zherikhin, V.V. and Sukatsheva, I.D. (1973) Cretaceous insect-bearing ‘amber’ (retinite) from northern Siberia, BeiBienko. Doklady na dvadtsat chetvertomiezhegodnom chtenii pamyati N.A. Kholodkovskogo aprelya 1971 [24th Annual Rep. on Lectures in Memory of N.A. Kolodovsky (April 1971)], pp. 3–48, Nauka, Leningrad.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Thorne, B.L., Grimaldi, D.A., Krishna, K. (2000). Early Fossil History of the Termites. In: Abe, T., Bignell, D.E., Higashi, M. (eds) Termites: Evolution, Sociality, Symbioses, Ecology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3223-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3223-9_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5476-0

  • Online ISBN: 978-94-017-3223-9

  • eBook Packages: Springer Book Archive