Skip to main content

Somatic and Gamatic Embryogenesis in Quercus Suber L.

  • Chapter

Part of the book series: Forestry Sciences ((FOSC,volume 67))

Abstract

Cork-oak (Quercus suber L., order Fagales, family Fagaceae) belongs to a group of forest species of outstanding importance in the Boreal hemisphere. Oaks are the dominant species in many ecosystems of the Holartic region.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baldursson S, Krogstrup P, Norgaard JV, Andersen SB. (1993). Microspore embryogenesis in anther culture of three species of Populus and regeneration of dihaploid plants of Populus trichocarpa. Can. J. For. Res. 23, 1821–1825.

    Article  Google Scholar 

  • Barreneche T., Bodenes C., Lexer C., Trontin J-F., Fluch S., Streiff R., Plomion C., Roussel G., Steinkellner H., Burg K., Favre J-M., Glössl J., Kremer A. (1998). A genetic linkage map of Quercus robur L. (pedunculate oak) based on RAPD, SCAR, microsatellite, minisatellite, isozyme and 5S rDNA markers. Theor. Appl. Genet. 97, 1090–1103.

    Article  CAS  Google Scholar 

  • Bolstein, D, White, R.L., Skolnick, M.H., Davis, R.W. (1980). Construction of a genetic map in man using restriction fragment length polymorphism. Am. J. Hum. Genet. 32, 314–331.

    Google Scholar 

  • Boulay, M. (1984) Aspects practiques de la multiplication in vitro des essences forestieres. Annales de Recherches Sylvicoles AFOCEL, 7–43

    Google Scholar 

  • Bueno, M.A., Astorga, R., Manzanera, J.A. (1992) Plant regeneration through somatic embryogenesis in Quercus suber L. Physiol. Plant. 85, 30–34.

    Article  Google Scholar 

  • Bueno, M.A., Gómez, A, Vicente, O., Manzanera, JA. (1996). Stability in ploidy level during somatic embryogenesis in Quercus canariensis. In: Somatic Cell Genetics and Molecular Genetics of Trees. M.R. Ahuja, W. Boerjan, D.B. Neale (eds.). Forestry Science Vol. 49. Kluwer Academic Publishers, Dordrecht, pp 23–28. ISBN 0–7923–4179–1.

    Google Scholar 

  • Bueno M.A., Gómez A., Boscaiu M., Manzanera J.A., Vicente O. (1997). Stress-Induced formation of haploid plants through anther culture in cork-oak (Quercus suber). Physiol. Plant. 99, 335–341.

    Article  CAS  Google Scholar 

  • Bueno, M.A., Agundez, M.D., Gómez, A., Carrascosa, M.J., Manzanera, J.A. (1999). Haploid origin of corkoak anther embryos detected by enzyme and RAPD gene markers. Int. J. Plant Sci. (in press).

    Google Scholar 

  • Chalupa, V. (1990). Plant regeneration by somatic embryogenesis from cultured inmature embryos of oak (Quercus robur L.) and linden (Tilla cordata Mill.). Plant Cell Rep. 9, 398–401.

    Article  CAS  Google Scholar 

  • Chalupa, V. (1995). Somatic embryogenesis in oak (Quercus spp.) In: Somatic Embryogenesis of Woody Plants. S.M. Jain, P. Gupta, R.J. Newton (eds.) Vol. 2. Kluwer Academic Publishers, Dordrecht, pp. 67–87. ISBN–0–7923–3070–b.

    Google Scholar 

  • Conkle, M.T., Hodgskiss P.D., Nunnally, L.B., Hunter, S.C. (1982). Starch gel electrophoresis of conifer seeds: a laboratory manual. USDA Pacific Southwest Forest and Range Experiment Station. 1–20.

    Google Scholar 

  • Cooke, G.B. (1948) Cork and cork products. Econ. Bot. 2, 393–402.

    Article  CAS  Google Scholar 

  • Doyle J.J., Doyle J.L. (1990). Isolation of plant DNA from fresh tissue. Focus 12, 13–15.

    Google Scholar 

  • Elena-Rosselló, J., Cabrera, E. (1996). Isozyme variation in natural populations of cork oak (Quercus suber L.). Population structure, diversity, differentiation and gene flow. Silvae Genetica 45 (4), 229–235.

    Google Scholar 

  • El Maataoui, M., Espagnac, H. (1987) Neoformation of somatic embryo-like structures from cork-oak (Quercus suber L.) tissue cultures. Comptes Rendus de l’Academie de Sciences, serie III, Vol. 304, No 3, Jan. 21, 83–88.

    Google Scholar 

  • Fernandez-Guijarro, B., Celestino, C., Toribio, M. (1995). Influence of external factors on secondary embryogenesis and germination in somatic embryos from leaves of Quercus suber. Plant Cell Tiss Org Cult 41, 99–106.

    Article  Google Scholar 

  • Fields, R.L., Scribner, K.T. (1997). Isolation and characterisation of novel waterfowl microsatellite loci: cross-species comparisons and research application. Molecular Ecology. 6, 199–202

    Article  PubMed  CAS  Google Scholar 

  • Galbraith, D.W., Hakins, K.R., Maddox, G.M., Ayres, N.M., Sharma, D.R., Firoozabady, E. (1983). Rapid flow cytometric analysis of the cell cycle in intact plant tissue. Science 220, 1049–1051.

    Article  PubMed  CAS  Google Scholar 

  • Galbraith, C.W. (1989). Analysis of higher plants by flow cytometry and cell sorting. Int Rev Cytol 116, 165–228.

    Article  Google Scholar 

  • Galbraith, C.W. (1990). Flow cytometric analysis of plant genomes. In: Methods in cell Biology. Darzynkiewicz, Z., Crissman, H.A. Vol 33 Flow Cytometry. Pp. 549–562. Academic Press Inc. San Diego

    Chapter  Google Scholar 

  • Gallego, F.J., Martinez, I., Celestino, C., Toribio, M. (1997). Testing somaclonal variation using RAPDs in Quercus suber L. Somatic embryos. Int. J. Plant Sci. 158 (5), 563–567.

    Article  CAS  Google Scholar 

  • Gamborg, O.L. (1966) Aromatic metabolism in plants II. Enzymes of the shikimate pathway in suspension cultures of plant cells. Can. J. Biochem. 44, 791–799.

    Article  PubMed  CAS  Google Scholar 

  • Gingas, V.M., Lineberger, R.D. (1989). Asexual embryogenesis and plant regeneration in Quercus. Plant Cell Tissue Organ Cult. 17, 191–203.

    Article  Google Scholar 

  • Gonzalez-Melendi, P., S.-Testillano, P., Ahmadian, P., Fadón, B., Vicente O., Risueflo M.C. (1995) In situ characterization of the late vacuolate microspore as a convenient stage to induce embryogenesis in Capsicum. Protoplasma 187, 60–71.

    Google Scholar 

  • Gonzalez-Melendi, P., S.-Testillano, P., Ahmadian, P., Fadón, B., Risueflo, M.C. (1996a): New in situ approaches to study the induction of pollen embryogenesis in Capsicum annuum L. Eur. J. Cell Biol. 69, 373–386.

    PubMed  CAS  Google Scholar 

  • Gonzalez-Melendi, P., S.-Testillano, P., Préstamo, G., Fadón, B., Risueflo, M.C. (1996b) Cellular characterization of key developmental stages for pollen embryogenesis induction. Int. J. Dev. Biol. Suppl. 1, 127–128.

    Google Scholar 

  • Greilhubert, J.’(1988). “Self-tanning”–a new and important source of stoichiometric error in cytophotometric determination of nuclear DNA content in plants. Plant Sys. Evol. 158, 96–97.

    Google Scholar 

  • Gresshoff, P.M., Doy, C.H. (1972) Development and differentiation of haploid Lycopersicon esculentum. Planta, 107, 161–70.

    Article  Google Scholar 

  • Hakman, I., Von Arnold, S. (1988). Somatic embryogenesis and plant regeneration from suspension cultures of Picea glauca (white spruce). Physiol. Plant. 83, 247–254.

    Google Scholar 

  • Heller, R. (1953) Recherches sur la nutrition minérale des tissus végétaux cultivés “in vitro”. Annales de Sci. Nat. (Bot.) Biologie Végétale, 14, 1–223.

    Google Scholar 

  • Hokanson, S.C., Isebrands, J.G., Jensen, R.J., Hancock, J.F. (1993). Isozyme variation in oaks of the Apostle Islands in Wisconsin: Genetic structure and levels of inbreeding in Quercus rubra and Q. ellipsoidalis (Fagaceae). Am. J. of Botany 80 (11), 1349–1357.

    Article  CAS  Google Scholar 

  • Jorgensen, J. (1988). Embryogenesis in Quercus petraea and Fagus sylvatica. J Plant Physiol 132, 638–640.

    Article  Google Scholar 

  • Komissarov, D.A. (1946) Applying of growth substances tothe vegetative propagation of woody plants by cuttings. Central Forest Res. Inst., Leningrad. 132 pp.

    Google Scholar 

  • Madrigal, A., Fernâdez Cavada, J.L., Ortufo, S., Notano, A. (1999). El sector forestal espanol. FUCOVASA, Madrid, 125 pp.

    Google Scholar 

  • Manzanera, J.A., Pardos, J.A (1990). Micropropagation of juvenile and adult Quercus suber L. Plant Cell, Tiss.Org. Cult 21, 1–8.

    Article  CAS  Google Scholar 

  • Manzanera, J.A., Astorga, R., Bueno, M.A. (1993) Somatic embryo induction and germination in Quercus suber L. Silvae Genetica 42 (2–3), 90–93.

    Google Scholar 

  • Manzanera, J.A., Bueno, M.A., Pardos, J.A. (1996). Quercus robur L. (Pedunculate oak). In: Biotechnology in Agriculture and Forestry. Vol. 35. Trees IV. Y.P.S. Bajaj. Springer Verlag. Berlin, Heidelberg, pp. 321–341.

    Google Scholar 

  • Montero, G. (1987) Producción y regeneración de los alcomocales. Montes, 15, 37–45.

    Google Scholar 

  • Montoya, J.M. (1988). Los alcornocales. M.A.P.A., Madrid.

    Google Scholar 

  • Müller-Starck, G. and Jorgensen, J. (1991). Enzyme gene markers as indicators of the initial ploidy in anther cultures of trees. Can J. For. Res. 21, 1141–1144.

    Article  Google Scholar 

  • Murashige, T. and Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant 15, 473–497.

    Article  CAS  Google Scholar 

  • Natividade, J. (1950) Subericultura. Ministerio de Economia, Direcçao dos Servicios Forestais e Aquicolas. Lisboa. 370 pp.

    Google Scholar 

  • Ostrolucka, M.G. (1983). Development of male reproductive organs and microsporogenesis of some species of the genus Quercus. In: Fertilization and embryogenesis in ovulated plants proceedings of the V II

    Google Scholar 

  • International Cytoembryological Symposium, High Tatra (Rackovadolina), June 14–17, 1982 pp 145–147. Slovack Academy of Sciences, Bratislava, Slovakia.

    Google Scholar 

  • Primmer, C.R., Moller, A.P., Ellegren, H. (1996). Polymorphisms revealed by simple sequence repeats. Trends in Plant Science. 1, 215–222.

    Google Scholar 

  • Risueno, M.C., Bueno, M.A., Testillano, P.S., Domenech, J., Pinto, B., Seguí, J.M., Gómez, A., Moreno, M.A. (1999). Embriogénesis de microsporas en cultiva in vitro de anteras de Quercus suber: estudios celulares. III Reunion de la Sociedad Espanola de Cultiva in vitro de Tejidos Vegetates (SECIVTV), Malaga, Spain, 10–14 Nov.

    Google Scholar 

  • Risueno, M.C., Testillano, P.S., Gonzalez-Melendi, P. (1998) The use of cryomethods for plant biology studies. In: Electron Microscopy 98. Calderón-Benavides HA, Yacaman MJ, eds. ( Bristol: Inst. Physicis Publishing ) pp. 3–4.

    Google Scholar 

  • Rival, A., Beule, T., Barre, P., Haman, S., Duval, Y. (1997). Comparative flow cytometric estimation of nuclear DNA content in oil palm (Elaeis guineensis Jacq) tissue cultures and seed-derived plants. Plant Cell Rep 16, 884–887.

    Article  CAS  Google Scholar 

  • Roberts, D.R., Flirnn, B.S., Webb, D.T., Webster, F.B., Sutton, B.C.S. (1990). Abcisic acid and indole-3butyric acid regulation of maturation and accumulation of storage proteins in somatic embryos of interior spruce. Physiol. Plant. 78, 355–360.

    Article  CAS  Google Scholar 

  • Roberts, D.R. (1991). Abcisic acid and manitol promote early development, maturation and storage protein accumulation in somatic embryos of interior spruce. Physiol. Plant. 83, 247–254.

    Article  CAS  Google Scholar 

  • Roldao, I.F., Alpuim, M.H., Bohm, J. (1992). Consideraçoes sobre os resultados ja obtidos na propagaçâo vegetativa do sobreiro. Estacaria e enxertia. Scientia Gerundensis 18, 85–89.

    Google Scholar 

  • Saiki, R.K., Gelfand, S., Stoffel, S., Scharf S.T., Higuchi, R., Horn, G.T., Mullis, K.B., Erlich, H.A. (1988). Primer-detected enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491.

    Article  PubMed  CAS  Google Scholar 

  • Samuel, R., Pinsker, W., Ehrendorfer, F. (1995). Electrophoretic Analysis of Genetic Variation within and between Populations of Quercus cerris, Q. pubescens, Q. petraea and Q. robur (Fagaceae) from Eastern Austria. Botanica Acta 108, 173–1–173–10.

    Google Scholar 

  • Sanchez, N., Grau, J.M., Manzanera, J.A. Bueno, M.A. (1998). RAPD markers for the identification of Populus species. Silvae Genetica 47, 67–71.

    Google Scholar 

  • Scandalios, J.G. (1969). Genetic control of multiple forms of enzymes in plants. A review. Biochemical Genetics 3, 37–79.

    Article  CAS  Google Scholar 

  • Schenk, R.U., Hildebrandt, A.C. (1972). Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can. J. Bot. 50, 199–204.

    Article  CAS  Google Scholar 

  • Sommer, H.E., Brown, C.L., Kormanik, P.P. (1975). Differentiation of plantlets in longleaf pine (Pinus palustris Mill.) tissue cultured in vitro. Bot. Gaz. 136, 196–200.

    Article  Google Scholar 

  • Steinkellner, H., Fluch, S., Turetschek, E., Lexer, C., Streiff, R., Kremer A., Burg, K. Glössl, J. (1997a). Identification and characterization of (GA/CT)„- microsatellite loci from Quercus petraea. Plant Mol Biol 33, 1093–1096.

    Article  PubMed  CAS  Google Scholar 

  • Steinkellner, H., Lexer, C., Turetschek, E., Glössl, J. (19976). Conservation of (GA)„ microsatellite loci between Quercus species. Molecular Ecology 6, 1189–1194.

    Google Scholar 

  • Streiff, R., Labbe, T., Bacilieri, R., Steinkellner, H., Glössl, J., Kremer, A. (1998). Whitin-population genetic structure in Quercus robur L. And Quercus petraea (Matt.) Liebl. Assessed with isozymes and microsatellites. Molecular Ecology 7, 317–328.

    Article  Google Scholar 

  • Sun, H.S., Kirkpatrick, B.W. (1996). Exploiting dinucleotide microsatellites conserved among mammalian species. Mammalian Genome. 7, 128–132.

    Article  PubMed  CAS  Google Scholar 

  • Testillano, P.S., Gonzalez-Melendi, P., Ahmadian, P., Fadón, B., Risueno, M.C. (1995) The immunolocalization of nuclear antigens during the pollen developmental program and the induction of pollen embryogenesis. Exp. Cell Res. 221, 41–54.

    Article  PubMed  CAS  Google Scholar 

  • Walton, D.C. (1980). Biochemistry and physiology of abcisic acid. Am. Rev. Plant Physiol. 31,453–489. Welsh, J., McClelland, M. (1990). Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acid Res. 18, 7213–7218.

    Google Scholar 

  • Wendel, J.F., Weeden, N.F. (1989). Visualization and interpretation of plant isozymes. In: Isozymes in Plant Biology. D.E. Soltis and P.S. Soltis, eds. Dioscorides Press. Portland, Oregon, 5–44.

    Chapter  Google Scholar 

  • Williams, J.G., Kubelik, A.R., Livak, K.J., Rafalski, J.A., Tingey, S.V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic. Acids. Res. 18, 6531–6535

    Article  PubMed  CAS  Google Scholar 

  • Zeevart, J.A.D., Creelman, R.A. (1988). Metabolism and physiology of abcisic acid. Am. Rev. Plant Physiol. Plant. Mol. Biot. 39, 439–473.

    Article  Google Scholar 

  • Ziegenhagen, B., Guillemaut, M., Scholz, F. (1993). A procedure for mini-preparations of genomic DNA from needles of Silver Fir (Abies alba Mill.). Plant Mol Biol Reporter 11, 117–121.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bueno, M.A., Gómez, A., Manzanera, J.A. (2000). Somatic and Gamatic Embryogenesis in Quercus Suber L.. In: Jain, S.M., Gupta, P.K., Newton, R.J. (eds) Somatic Embryogenesis in Woody Plants. Forestry Sciences, vol 67. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3030-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3030-3_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5508-8

  • Online ISBN: 978-94-017-3030-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics