Advertisement

Somatic Embryogenesis Induction in Tamarillo (Cyphomandra betacea)

Chapter
Part of the Forestry Sciences book series (FOSC, volume 67)

Abstract

Cyphomandra betacea (Cay.) Sendtn. usually known as tamarillo or tree tomato, is a solanaceous soft wood tree (Fig. 1A) grown for their edible fruits (Fig. 1B). The species, which may reach 2 – 4 meter height (Slack, 1976), produces tomato-like red, orange or yellow fruits according with the cultivars. The fruits of the red cultivar are the most popular due to their more striking appearance and better flavour (Slack, 1976). They are generally 2 – 3 inches long and 2 inches in diameter possessing many seeds (Hooker, 1899). Also included in the same genus are the species Casana (Cyphomandra casana), Mountain Tomato (C. crassifolia) and Guava Tamarillo (C. fragans). The plant can be propagated by seeds or cuttings (Fougue, 1973) or it may be grafted in Solanum mauritianum (Slack, 1976). In the first case, plants do not usually come true-to-type rendering difficult the propagation of selected genotypes (Barghchi, 1998). Several authors (see section 1.3) have also reported protocols for in vitro regeneration. The first pinkish flowers appear in spring, while the mature fruits are collected from October to April (Guimarães et al., 1996). However, flower appearance and fruit maturity can be changed by pruning (Slack, 1976).

Keywords

Somatic Embryo Somatic Embryogenesis Embryogenic Callus Zygotic Embryo Auxin Polar Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ammirato, P.V., 1989. Recent progress in somatic embryogenesis. Int. Association for Plant Tiss. Cult. Newslett 57: 2–16.Google Scholar
  2. Atkinson, R.G., Gardner, R.C., 1993. Regeneration of transgenic tamarillo plants. Plant Cell Rep 12: 347–351.CrossRefGoogle Scholar
  3. Barciela, J., Vieitez, A.M., 1993. Anatomical sequence and morphometric analysis during somatic embryogenesis on cultured cotyledon explants of Camellia japonica L. Ann. Bot 71: 359–404.Google Scholar
  4. Barghchi, M., 1986. In vitro rejuvenation of Cyphomandra betacea (tamarillo). Plant Physiology Division Biennial Report, New Zealand Department of Scientific and Industrial Research (DSIR), pp. 52.Google Scholar
  5. Barghchi, M., 1998. Regeneration, plant improvement and virus elimination of tamarillo [Cyphomandra betacea (Cay.) Sendt.]. In: M.R Davey et al. (Eds.), Tree Biotechnology–Towards the Millennium, pp. 173–185. Nottingham University Press, Nottingham.Google Scholar
  6. Barriga, P.C., Cruz, G.S., Martins-Louçâo, A., Canhoto, J.M., 1998. Somatic embryogenesis induction in carob (Ceratonia siiliqua L.). Abst. of the XXXIII Meeting of the Sociedade Portuguesa de Microscopia Electrónica e Biologia Celular. pp. 94. Porto, Portugal.Google Scholar
  7. Binding, H., Nehls, R., 1978. Regeneration of isolated protoplasts to plants in Solanum dulcamara L. Z. Pflanzenphysiol 85: 279–280.Google Scholar
  8. Binding, H., Görschen, E., Hassanein, A.M., Qing, L.H., Mordhorst, G., Puck, G., Rudnick, J., Rong, W.G., Truberg, B., 1992. Plant development from protoplasts of members of Bryophyta, Pteridophyta and Spermatophyta under identical conditions. Physiol. Plant 85: 295–300.Google Scholar
  9. Bohs, L., 1991. Crossing studies in Cyphornandra (Solanaceae) and their systematic and evolutionary significance. Am. J. Bot 78: 1683–1693.Google Scholar
  10. Cacciopo, O., 1984. La feijoa. Reda, Roma.Google Scholar
  11. Canhoto, J.M., Cruz, G.S., 1994. Improvement of somatic embryogenesis in Feijoa sellowiana•Berg (Myrtaceae) by manipulation of culture media composition. In Vitro Cell. Dev. Biol 30P: 21–25.Google Scholar
  12. Canhoto, J.M., Cruz, G.S., 1996a. Feijoa sellowiana Berg (Pineapple Guava). In: Y.P.S. Bajaj (Ed.), Biotechnology in Agriculture and Forestry, vol. 35. Trees IV, pp. 155–171. Springer-Verlag, Berlin.Google Scholar
  13. Canhoto, J.M., Cruz, G.S., 1996b. Histodifferentiation of somatic embryos in cotyledons of pineapple guava (Feijoa sellowiana Berg). Protoplasma 191: 34–45.CrossRefGoogle Scholar
  14. Canhoto, J.M., Lopes, M.L., Cruz, G.S., 1999a. Somatic embryogenesis and plant regeneration in myrtle (Myrtaceae). Plant Cell Tiss. Org. Cult 57: 13–21.Google Scholar
  15. Canhoto, J.M., Lopes, M.L., Cruz, G.S., 1999b. Somatic embryogenesis induction in Bay Laurel (Laurus nobilis L.). In: S.M. Jain et al. (Eds.), Somatic embryogenesis in woody plants, vol. 4, pp. 341–367. Kluwer Academic Publishers, Dordrecht.Google Scholar
  16. Canhoto, J.M., Mesquita, J.M., Cruz, G.S., 1996. Ultrastructural changes in cotyledons of Pineapple Guava (Myrtaceae) during somatic embryogenesis. Ann. Bot 78: 513–521.Google Scholar
  17. Cheema, G.S., 1989. Somatic embryogenesis and plantlet regeneration from cell suspension and tissue culture of mature Himalayan poplar (Populus ciliata). Plant Cell Rep 9: 398–401.Google Scholar
  18. Cohen, D., Elliot, D., 1979. Micropropagation methods for blueberries and tamarillos. Comb Proc. Int. Plant Prop. Soc 29: 177–179.Google Scholar
  19. David, A., Laine, E., David, H., 1995. Somatic embryogenesis in Pinus caribaea. In: S.M. Jain et al. (Eds.), Somatic embryogenesis in woody plants, vol. 3, pp. 145–181. Kluwer Academic Publishers, Dordrecht.Google Scholar
  20. Dawes, S.N., Pringle, G.L., 1983. Subtropical fruit from South and Central America. In: G.S. Wratt et al. (Eds.), Plant breeding in New Zealand, pp. 123–138. Butterworths, Wellington.Google Scholar
  21. De Vries, S.C., Booij, H., Janssens, R., Vogels, R., Saris, F., Lo Schiavo, Terzi, F., Van Kammen, A., 1988. Carrot somatic embryogenesis depends on the phytohormone-controlled presence of correctly glycosylated extracellular proteins. Genes Dev 2: 462–476.CrossRefGoogle Scholar
  22. Deverno, L.L., 1995. An evaluation of somaclonal variation during somatic embryogenesis. In: S.M. Jain et al. (Eds.), Somatic embryogenesis in woody plants, vol. 1, pp. 361–377. Kluwer Academic Publishers, Dordrecht.Google Scholar
  23. Ferreira, M.L., Lopes, M.L., Verissimo, P.C., Canhoto, J.M., Cruz, G.S., 1998. Somatic embryogenesis in leaves of Cyphomandra betacea (Cay.) Sendtn.: histological and biochemical studies. Abst. of the IX International Cong. on Plant Tissue and Cell Culture, pp. 75. Jerusalem, Israel.Google Scholar
  24. Fouque, A., 1973. Solanacées. Fruits 28: 41–42.Google Scholar
  25. Gamborg, O., Miller, R., Ojima, K., 1968. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res 50: 151–158.Google Scholar
  26. Guimarées, M.L., G.S. Cruz, Montezuma-de-Carvalho, J.M., 1988. Somatic embryogenesis and plant regeneration in Cyphomandra betacea (Cay.) Sendt. Plant Cell Tiss. Org. Cult 15: 161–167.Google Scholar
  27. Guimarâes, M.L., Tomé, M.C., Cruz, G.S., 1996. Cyphomandra betacea (Cay.) Sendt. (Tamarillo). In: Y.P.S. Bajaj (Ed.), Biotechnology in Agriculture and Forestry, vol. 35. Trees IV, pp. 120–137. Springer-Verlag, Berlin.Google Scholar
  28. Heinze, B., Schmidt, J., 1995. Monitoring genetic fidelity vs somaclonal variation in Norway spruce (Picea abies) somatic embryogenesis by RAPD analysis. Euphytica 85: 341–345.CrossRefGoogle Scholar
  29. Hilbert, J.L., Dubois, T., Vasseur, J., 1992. Detection of embryogenesis-related proteins during somatic embryo formation in Chicorium. Plant Physiol. Biochem 13: 384–387.Google Scholar
  30. Hooker, J.D., 1899. Cyphomandra betacea. Curtis’s Bot. Mag 55:7682. http://www.crfg.org/pubs/ff/tamarillo.html (California Rare Fruit Growers, Inc.. Retrieved October 13, 1997 from the World Wide Web).Google Scholar
  31. Ishii, K., Thakur, R., Jain, S.M., 1999. Somatic embryogenesis and evaluation of variability in somatic seedlings of Quercus serrata by RAPD markers. In: S.M. Jain et al. (Eds.), Somatic embryogenesis in woody plants, vol. 4, pp. 403–414. Kluwer Academic Publishers, Dordrecht.Google Scholar
  32. Jain, S.M., De Klerk, G.-J., 1998. Somaclonal variation in breeding and propagation of ornamental crops. Plant Tiss. Cult., Biot 4: 63–75.Google Scholar
  33. Jain, S.M., 1999. An overview of a progress on somatic embryogenesis in forest trees. In: A. Altman et al. (Eds.), Plant Biotechnology and in Vitro Biology in the 21°` Century, pp. 57–63. Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
  34. Jain, S.M., Dong, N., Newton, R.J., 1989. Somatic embryogenesis in slash pine Pinus elliottii from immature embryos cultured in vitro. Plant Sci 65: 233–241.CrossRefGoogle Scholar
  35. Jha, T.B., Jha, S., Sen, S.K., 1992. Somatic embryogenesis from immature cotyledons of an elite Darjeeling tea clone. Plant Sci 84: 209–213.CrossRefGoogle Scholar
  36. Kendurkar, S.V., Nadganda, R.S., Phadke, C.H., Jana, MM., Shirke, S.V., Mascarenhas, A.F., 1995. Somatic embryogenesis in woody plants. In: S.M. Jain et al. (Eds.), Somatic embryogenesis in woody plants, vol. 1, pp. 49–79. Kluwer Academic Publishers, Dordrecht.Google Scholar
  37. Kriebel, H.B., 1995. Introduction. In: S.M. Jain et al. (Eds.), Somatic embryogenesis in woody plants, vol. 1, pp. 18. Kluwer Academic Publishers, Dordrecht.Google Scholar
  38. Laemmli, U.K., 1970. Cleavage of the structural proteins during the assembly of the head of the bacteriophage T4. Nature 277: 680–685.CrossRefGoogle Scholar
  39. Lehr, M.A., 1987. Variations morphologiques et génétiques chez Picea abies obtenues après embryogenèse somatique–étude préliminaire. Ann. Recherches Sylvicoles, AFOCEL pp. 35–47.Google Scholar
  40. Levi, A., Sink, K.C., 1990. Differential effects of sucrose, glucose and fructose during somatic embryogenesis in Asparagus. J. Plant Physiol 137: 184–189.CrossRefGoogle Scholar
  41. Litz, R.E., 1984. In vitro somatic embryogenesis from callus of jaboticaba, Myrciaria cauliflora. HortScience 19:62–64Google Scholar
  42. Liu, C.-M, Xu, Z.-H., Chua, N.-H., 1993. Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 5: 621–630.PubMedGoogle Scholar
  43. Lodhi, M.A., Ye, G.N., Weeden, N.F., Reisch, B.I., 1994. A simple and efficient method for DNA extraction from grapevine cultivars and Vitis species. Plant Mol. Biol. Rep 12: 6–13.Google Scholar
  44. Lomax, T.L., Muday, G.K., Rubery, P.H., 1995. Auxin transport. In: P.J. Davies (Ed.), Plant Hormones–Physiology, Biochemistry and Molecular Biology pp. 509–530. Kluwer Academic Publishers, Dordrecht.Google Scholar
  45. Mayer, U., Buttner, G., Jurgens, G., 1993. Apical-basal pattern formation in the Arabidopsis embryo: studies on the role of the gnom gene. Development 117: 149–162.Google Scholar
  46. McCane, J., Widdowson, D.A., 1992. In: Fruit and nut. Suppl. to the composition of foods, 5s` edn, pp. 74–77. Holland, Unwin, Buss, London.Google Scholar
  47. Meinke, D.W., 1985. Embryo-lethal mutants of Arabidopsis thaliana: analysis of mutants with a wide range of lethal phases. Theor. Appl. Genet 69: 543–552.Google Scholar
  48. Merkte, S.A., parrot, W.A., Flinn, B.D., 1995. Morphogenic aspects of somatic embryogenesis In: T.A. Thorpe (Ed.), In vitro embryogenesis in plants, pp. 155–203. Kluwer Academic Publishers, Dordrecht.Google Scholar
  49. Michaux-Ferrière, N., Grout, H., Carron, M.P., 1992. Origin and ontogenesis of somatic embryos in Hevea brasiliensis (Euphorbiaceae). Am. J. Bot 79: 174–180.Google Scholar
  50. Muralidharan, E.M., Gupta, P.K., Mascarenhas, A.F., 1989. Plantlet production through high frequency somatic embryogenesis in long term cultures of Eucalyptus citriodora. Plant Cell Rep 8: 41–43.CrossRefGoogle Scholar
  51. Murashige, T., Skoog, F., 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15: 473–497.Google Scholar
  52. Pedroso M.C., Pais, M.S., 1993. Direct embryo formation in leaves of Camellia japonica L. Plant Cell Rep 12: 639–643.CrossRefGoogle Scholar
  53. Pedroso, M.C., Hilbert, J.-L., Vasseur, J., Pais, M.S., 1996. Polypeptides associated with the induction of direct somatic embryogenesis in Camellia japonica leaves. I. Selection of two embryogenic-specific polypeptides. J. Exp. Bot 46: 1579–1584.Google Scholar
  54. Perez, C., Fernandez, B., Rodriguéz, R., 1983. In vitro plantlet regeneration through asexual embryogenesis in cotyledonary segments of Corylus avellana L. Plant Cell Rep 2:226–228.Google Scholar
  55. Pijut., P.M. 1999. Somatic embryogenesis from immature fruit of Juglans cinerea. In: S.M. Jain et al. (Eds.), Somatic embryogenesis in woody plants, vol. 4, pp. 415–429. Kluwer Academic Publishers, Dordrecht.Google Scholar
  56. Radojevic, L., Djordjevic, N, Guc-Scekic, M., 1988. In vitro embryogenic callus formation in Chimonanthus. In: M.R. Ahuja (Ed.), Somatic Cell Genetics of Woody Plants, pp. 51–52. Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
  57. Raemakers, K., Jacobsen, E., Visser, R.,1999. Proliferative somatic embryogenesis in woody species. In: S.M. Jain et al. (Eds.), Somatic embryogenesis in woody plants, vol. 4, pp. 29–59. Kluwer Academic Publishers, Dordrecht.Google Scholar
  58. Raven, J.A., 1975. Transport of indoleacetic acid in plant cells in relation to pH and electrical potential gradients, and its significance for polar IAA transport. New Phytol 74: 163–172.CrossRefGoogle Scholar
  59. Rubery, P.H., Sheldrake, A.R., 1974. Carrier-mediated auxin transport. Planta 188: 101–121.CrossRefGoogle Scholar
  60. Schiavone, F.M., Cooke, T.J., 1987. Unusual patterns of somatic embryogenesis in the domesticated carrot: developmental effects of exogenous auxins and auxin transport inhibitors. Cell Differentiation 21: 5357.CrossRefGoogle Scholar
  61. Singh, R.J., 1986. Chromosomal variation in immature embryo derived calluses of barley (Hordeum vulgare L.). Theor. Appl. Genet 72: 710–716.Google Scholar
  62. Singh, R.J., 1993. Plant Cytogenetics, pp. 285–307. CRC Press, Boca Raton.Google Scholar
  63. Slack, J.M., 1976. Growing tamarillos. Agric. Gaz 86: 2–4.Google Scholar
  64. Söndahl, MR., Sharp, W.R., 1977. High frequency induction of somatic embryos in cultured leaf explants of Coffea arabica L. Z. Pflanzenphysìol 81: 395–408.Google Scholar
  65. Spurr, A.R., 1969. A low viscosity epoxy resin embedding medium for electron microscopy. J. Ultrast. Res 26: 3143.Google Scholar
  66. Standring, L.S., Pringle, G.J., Murray, B.G., 1990. The control of chloroplast number in Solanum muricatum Ait and Cyphomandra betaceae (Cay.) Sendt. And its value as an indicator of poliploidy. Euphytica 47: 7177.Google Scholar
  67. Termignoni, R.R., Wang, P.J., Hu, C.Y., 1996. Somatic embryo induction in Eucalyptus dunni. Plant Cell Tiss. Org. Cult 45: 129–132.Google Scholar
  68. Thakur, R.C., Goto, S., Ishii, K., Jain, S.M., 1999. Monitoring genetic stability in Quercus serrata Thunb. Somatic embryogenesis using RAPD markers. J. For. Res 4: 157–160.Google Scholar
  69. Tomar, U.K., Gupta, S.C., 1988. Somatic embryogenesis and organogenesis in callus cultures of a legume tree - Albizia richardiana King. Plant Cell Rep 7: 70–73.CrossRefGoogle Scholar
  70. Watt, M.P., Blakeway, F., Cresswell, C.F., Herman, B., 1991. Somatic embryogenesis in Eucalyptus grandis. South Afr. For. J 157: 59–65.Google Scholar
  71. Yu, K.F., Pauls, K.P., 1993. Optimisation of the PCR program for RAPD analysis. Nucleic Acid Res 20: 2606.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  1. 1.Departamento de Botânica (Centro de Biologia Vegetal), Faculdade de Ciências e TecnologiaUniversidade de CoimbraCoimbraPortugal

Personalised recommendations