Skip to main content

Carbon Flow and Nutrient Regeneration from the Decomposition of Macrophyte Debris in a Sandy Beach Microcosm

  • Conference paper
Sandy Beaches as Ecosystems

Part of the book series: Developments in Hydrobiology ((DIHY,volume 19))

Abstract

Recent studies on the extensive kelp beds of the west coast of South Africa have provided a good deal of information on the standing stocks (Velimirov et al., 1977; Field et al., 1980), primary production (Field et al., 1977; Dieckmann, 1978, 1980; Mann et al., 1979; Brown, 1980, 1981; Borchers, Field, 1981; Jarman, Carter, 1981; Carter, 1982; for review see Newell et al., 1982) and the ecological energetics of the consumer organisms in this system (Greenwood, 1977, 1980; Fitzgerald, 1979; Griffiths, King, 1979a b; Shafir, Field, 1980a, b; Pollack, 1981). Much of the primary production of the two dominant phaeophytes Laminaria pallida and Ecklonia maxima enters the water column after fragmentation and is utilised by filter feeders which dominate the system (Field et al., 1977, 1980). Newell et al. (1982) have, however, pointed out that about 6% of the annual seaweed primary production is broken free in storms and is exported either to nearby beaches or fragments in situ in the swash zone much as has been reported from other parts of the world (e.g. Hayes, 1974).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Armstrong FAG,Sterns CR and Strickland JDH (1967) The measurement of upwelling and subsequent biological processes by means of the Technicon Autoanalyzer and associated equipment, Deep Sea Res. 14, 381–389.

    Google Scholar 

  • Backlund HO (1945) Wrack fauna of Sweden and Finland. Ecology and chorology, Opuscula Entomologica (Supplementum) 5, 1–236.

    Google Scholar 

  • Borchers P and Field JG (1981) The effect of kelp shading on phytoplankton production, Botanica mar. 24, 89–91.

    Article  Google Scholar 

  • Bowden WB (1977) Comparison of two direct-count techniques for enumerating aquatic bacteria, Appl Env. Microbiol. 33, 129–132.

    Google Scholar 

  • Brown PC (1980) Phytoplankton production studies in the coastal waters off the Cape Peninsula, South Africa. MSc thesis, Zoology Department, University of Cape Town, Rondebosch 7700, South Africa 98 pp.

    Google Scholar 

  • Brown PC (1981) Pelagic phytoplankton, primary production and nutrient supply in the southern Benguela region. Proceedings of the Symposium on Upwelling Processes in the Southern Benguela Region, Trans. R. Soc. S. Afr. 44, 347–356.

    Article  Google Scholar 

  • Carter RA (1982) Phytoplankton biomass and production in a southern Benguela kelp bed system, Mar. Ecol. Prog. Ser. 8, 9–14.

    Article  Google Scholar 

  • Cundell AM, Brown MS, Stanford R and Mitchell R (1979) Microbial degradation of Rh,izophona mangle leaves immersed in the sea, Estuar. coast. mar. Sci. 9, 281–286.

    Google Scholar 

  • Cundell AM, Sleeter TD and Mitchell R (1977) Microbial populations associated with the surface of the brown alga A6aophyttum nvdosum, Microb. Ecol. 4, 81–91.

    Google Scholar 

  • Davies C, Koop K, Muir DG and Robb FT (1983) Bacterial diversity in adjacent kelp dominated habitats, Mar. Ecol. Prog. Ser. (submitted to press).

    Google Scholar 

  • Dieckmann GS (1978) Aspects of growth and production of Lamincob a pakLLda (Grey.), J. Agr. off the Cape Peninsula. MSc thesis, Botany Department, University of Cape Town, Rondebosch 7700, South Africa, 98 pp.

    Google Scholar 

  • Dieckmann GS (1980) Aspects of the ecology of Laminai La patLida (Grey.) J. Agr. off the Cape Peninsula (South Africa). I. Seasonal Growth, Botanica Mar. 23, 579–585.

    Google Scholar 

  • Fenchel T and Blackburn TH (1979) Bacteria and mineral cycling, Academic Press, London, 225 pp.

    Google Scholar 

  • Fenchel T and Harrison P (1976) The significance of bacterial grazing and mineral cycling for the decomposition of particulate detritus. In: The role of terrestrial and aquatic organisms in the decomposition processes ( JM Anderson, A Macfayden, eds), Blackwell, Oxford, 285–299.

    Google Scholar 

  • Fitzgerald B (1979) A preliminary investigation of the filtration rates of Pyuna decomposition (Heller) under laboratory conditions. Unpubl. Honours Project, Zoology Department, University of Cape Town, Rondebosch 7700, South Africa, 19 pp.

    Google Scholar 

  • Field JG, Jarman NG, Dieckmann GS, Griffiths CL, Velimirov B and Zoutendyk P (1977) Sun, waves, seaweed and lobsters: the dynamics of a west coast kelp bed, S. Afr. J. Sci. 73, 7–10.

    Google Scholar 

  • Field JG, Griffiths CL, Griffiths RJ, Jarman NG, Zoutendyk P, Velimirov B and Bowes A (1980) Variation in structure and biomass of kelp communities along the south west Cape coast, Trans. R. Soc. S. Afr. 44, 145–203.

    Google Scholar 

  • Gessner RV, Goos RD and Sieburth JMcN (1972) The fungal microcosm of the internodes of Span tina atumigona, Mar. Biol. 16, 269–273.

    Google Scholar 

  • Greenwood PJ (1974) The population dynamics and ecological energetics of Pakechinaz angutozuz at Robben Island and in False Bay, South Africa. MSc thesis, Zoology Department, University of Cape Town, Rondebosch 7700, South Africa, 71 pp.

    Google Scholar 

  • Greenwood PJ (1980) Growth, respiration and tentative energy budgets for two populations of the sea urchin Pwtech-Lout angutosaz (Leske). Estuar. coast. mar. sci. 10, 347–367.

    Article  Google Scholar 

  • Griffiths CL and King JA (1979a) Some relationships between size, food availability and energy balance in the ribbed mussel AuGacomya aie., Mar. Biol. 51, 141–149.

    Google Scholar 

  • Griffiths CL and King JA (1979b) Energy expended on growth and gonad output in the ribbed mussel Autacomya ate A, Mar. Biol. 53, 217–227.

    Google Scholar 

  • Griffiths CL and Stenton-Dozey J (1981) The fauna and rate of degradation of stranded kelp. Estuar. coast. Shelf Sci. 12, 645–653.

    Article  Google Scholar 

  • Hayes WB (1974) Sand beach energetics: importance of the isopod Tytaa puneatio, Ecology 55, 838–847.

    Article  Google Scholar 

  • Hobbie JE, Daley RT and Jasper S (1977) Use of Nuclepore filters for counting bacteria by fluorescence microscopy, Appl. Env. Microbiol. 33, 1125–1128.

    Google Scholar 

  • Howard-Williams C, Davies BR and Cross RHM (1978) The influence of periphyton on the surface structure of a Patamogetan pee Tnatuv L. leaf (an hypothesis), Aquatic Botany 5, 87–91.

    Article  Google Scholar 

  • Jarman NG and Carter RA (1981) The primary producers of the inshore regions of the Benguela. Symposium on Upwelling Processes in the Southern Benguela Region, Trans. R. Soc. S. Afr. 44, 321–326.

    Article  Google Scholar 

  • Jensen A and Stein JR (eds) (1978) Proceedings of the international seaweed symposium 9, Science Press, Princeton, USA, 634 pp.

    Google Scholar 

  • Koop K and Field JG (1980) The influence of food availability on population dynamics of a supralittoral isopod, Ligia ctaa-fafa Brandt, J. exp. mar. Biol. Ecol. 48, 61–72.

    Article  Google Scholar 

  • Koop K and Field JG (1981) Energy transformation by the supralittoral isopod Ligia d-Jatata Brandt, J. exp. mar. Biol. Ecol. 53, 221–233.

    Article  Google Scholar 

  • Koop K, Newell RC and Lucas MI (1982a) Biodegradation and carbon flow based on kelp (Ecktonia maxima) debris in a sandy beach microcosm, Mar. Ecol. Prog. Ser. 7, 315–326.

    Google Scholar 

  • Koop K, Newell RC and Lucas MI (1982b) Microbial regeneration of nutrients from the decomposition of macrophyte debris on the shore, Mar. Ecol. Prog. Ser. 9, 91–96.

    Google Scholar 

  • Laycock RA (1974) The detrital food chain based on seaweeds. I. Bacteria associated with the surface of Lcminakia fronds, Mar. Biol. 25, 223–231.

    Google Scholar 

  • Linley EAS and Newell RC (1981) Microheterotrophic communities associated with the degradation of kelp debris, Kieler Meeresforsch. 5, 345–355.

    Google Scholar 

  • Linley EAS, Newell RC and Bosma SA (1981) Heterotrophic utilisation of mucilage released during fragmentation of kelp (Ec1AonLa maxima and Lam,Locu a pakií.da). I. Development of micro bial communities associated with the degradation of kelp mucilage, Mar. Ecol. Prog. Ser. 4, 31–41.

    Google Scholar 

  • Lucas MI, Newell RC and Velimirov B (1981) Heterotrophic utilisation of mucilage released during fragmentation of kelp (Eckto nia maxima and Laminakia pa2PLda). II. Differential utilisation of dissolved organic components from kelp mucilage, Mar. Ecol. Prog. Ser. 4, 43–55.

    Google Scholar 

  • Lewin J, HrubyT and Mackas D (1975) Blooms of surf zone diatoms along the coast of the Olympic Peninsula. Washington. V. Environmental conditions associated with the blooms ( 1971 and 1972), Estuar. coast. mar. Sci. 3, 229–241.

    Google Scholar 

  • Luria SE (1960) The bacterial protoplasm: composition and organisation. In: Gunsalus IC and Stanier RY (eds). The bacteria, Vol. 1, Academic Press, New York, pp. 1–34.

    Google Scholar 

  • Mann KH, Jarman NG and Dieckmann GS (1979) Development of a method for measuring the productivity of Eeh on xt maxima ( Osbeck) Papenf, Trans. R. Soc. S. Afr. 44, 27–42.

    Google Scholar 

  • McLachlan A, Erasmus T, Dye AH, Wooldridge T, van der Horst G, Labiak TA and McGwynne L (1981) Sand beach energetics: an ecosystem’s approach towards a high energy interface, Estuar. coast. Shelf Sci, 13, 11–25.

    Google Scholar 

  • Mazure HGF and Field JG (1980) Density and ecological importance of bacteria on kelp fronds in an upwelling region, J. exp. mar. Biol. Ecol. 43, 173–182.

    Article  Google Scholar 

  • Muir DG (1977) The biology of Takancheha capews, L (Amphipoda: Talitridae), including a population energy budget. MSc thesis, Zoology Department, University of Cape Town, Rondebosch 7700, South Africa, 94 pp

    Google Scholar 

  • Newell RC (1980) The maintenance of energy balance in marine invertebrates exposed to changes in environmental temperature. In: Gilles R (ed.) Animals and environmental fitness, Pergamon Press, Oxford and New York.

    Google Scholar 

  • Newell RC and Branch GM (1980) The influence of temperature on the maintenance of metabolic energy balance in marine invertebrates, Adv. mar. Biol. 17, 329–396.

    Google Scholar 

  • Newell RC and Lucas MI (1981) The quantitative significance of dissolved and particulate organic matter released during fragmentation of kelp in coastal waters, Kieler Meeresforsch 5, 356–367.

    CAS  Google Scholar 

  • Newell RC and Field JG (1983) The contribution of bacteria and detritus to carbon and nitrogen flow in a benthic community, Mar. Biol. Letters 4, 23–36.

    Google Scholar 

  • Newell RC, Field JG and Griffiths CL (1982) Energy balance and the significance of microorganisms in a kelp bed community, Mar. Ecol. Prog. Ser. 8, 103–113.

    Article  Google Scholar 

  • Newell RC, Linley EAS and Lucas MI (1983) Microbial production and carbon conversion based on saltmarsh plant debris, Estuar. coast. mar. Sci. (in press).

    Google Scholar 

  • Newell RC, Lucas MI, Velimirov B and Seiderer LJ (1980) Quantitative significance of dissolved organic losses following fragmentation of kelp (EcEeon a maxima and Lamina ía pafLLda), Mar. Ecol. Prog. Ser. 2, 45–59.

    Article  CAS  Google Scholar 

  • Paerl HW (1975) Microbial attachment to particles in marine and freshwater ecosystems, Microb. Ecol. 2, 73–83.

    Google Scholar 

  • Pollock DE (1981) Carnivores of the inshore region of the Benguela upwelling system. Proceedings of the Symposium on Upwelling Processes in the Southern Benguela Region, Trans. R. Soc. S. Afr. 44, 341–345.

    Article  Google Scholar 

  • Robb FT, Davies BR, Cross R, Kenyon C and Howard-Williams C (1979) Cellulolytic bacteria as primary colonizers of Potamogeton pec Lnatw L. ( Sago pond weed) from a brackish south-temperate coastal lake, Microb. Ecol. 5, 167–177.

    Google Scholar 

  • Rodina AG (1972) Methods in aquatic microbiology, University Park Press, Baltimore, USA.

    Google Scholar 

  • Shafir A and Field JG (1980a) Population dynamics of the isopod Cina Canampoata (Crustacea: Malacostraea) in a kelp bed, Crustaceana 39, 185–195.

    Article  Google Scholar 

  • Shafir A and Field JG (1980b) The importance of a small carnivorous isopod in energy transfer, Mar. Ecol. Prog. Ser. 3, 203–215.

    Article  Google Scholar 

  • Sieburth JMcN and Thomas CD (1973) Fouling on eelgrass (Zortena mcuzína L.), J. Phycol. 9, 46–50.

    Google Scholar 

  • Sorokin YI and Kadota M (eds) (1972) Techniques for the assessment of microbial production and decomposition in fresh waters, I. BP Handbook No. 23, Blackwell Sci. Publ., Oxford, 112 pp.

    Google Scholar 

  • Stenton-Dozey J and Griffiths CL (1980) Growth, consumption and respiration by larvae of the kelp-fly Fuce PiacapentLa (Diptera: Anthomyiidae), S. Afr. J. Zool. 15, 280–283.

    Google Scholar 

  • Stephen AM (1979) Plant carbohydrates. In: Pirson A and Zimmermann MH (eds), Encyclopedia of plant physiology 8, Springer-Verlag, Heidelberg, pp. 555–584.

    Google Scholar 

  • Strickland JDH and Parsons TR (1972) A practical handbook of seawater analysis, 2nd ed. Bull. Fish. Res. Bd Can. 167.

    Google Scholar 

  • Stuart V, Lucas MI and Newell RC (1981) Heterotrophic utilisation of particulate matter from the kelp Laminania pcttida, Mar. Ecol. Prog. Ser. 4, 337–348.

    Article  Google Scholar 

  • Stuart V, Newell RC and Lucas MI (1982) Conversion of kelp debris and faecal material from the mussel AuYacomya aten by marine microorganisms, Mar. Ecol. Prog. Ser. 7, 47–57.

    Article  Google Scholar 

  • Todd RL and Kerr TJ (1972) Scanning electron microscopy of microbial cells on membrane filters, Appl. Microbiol. 23, 1160–1162.

    CAS  Google Scholar 

  • Troitsky AS and Sorokin YI (1967) On the methods of the calculation of the bacterial biomass in water bodies, Trans. Inst. Biol. Inland Waters Acad. Sci. USSR 19, 85–90.

    Google Scholar 

  • Velimirov B, Field JG, Griffiths CL and Zoutendyk P (1977) The ecology of kelp bed communities in the Benguela upwelling system. Analysis of biomass and spatial distribution, Helgoländer wiss. Meeresunters, 30, 495–518.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Koop, K., Lucas, M.I. (1983). Carbon Flow and Nutrient Regeneration from the Decomposition of Macrophyte Debris in a Sandy Beach Microcosm. In: McLachlan, A., Erasmus, T. (eds) Sandy Beaches as Ecosystems. Developments in Hydrobiology, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2938-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2938-3_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8521-4

  • Online ISBN: 978-94-017-2938-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics