Skip to main content

Oxygen consumption and ammonia accumulation in the hypolimnion of Walker Lake, Nevada

  • Chapter
Saline Lakes

Part of the book series: Developments in Hydrobiology ((DIHY,volume 162))

Abstract

Walker Lake (area = 140 km2, Zmean = 19.3 m) is a large, terminal lake in western Nevada. As a result of anthropogenic desiccation, the lake has decreased in volume by 75% since the 1880s. The hypolimnion of the lake, now too small to meet the oxygen demand exerted by decaying matter, rapidly goes anoxic after thermal stratification. Field and laboratory studies were conducted to examine the feasibility of using oxygenation to avoid hypolimnetic anoxia and subsequent accumulation of ammonia in the hypolimnion, and to estimate the required DO capacity of an oxygenation system for the lake. The accumulation of inorganic nitrogen in water overlaying sediment was measured in laboratory chambers under various DO levels. Rates of ammonia accumulation ranged from 16.8 to 23.5 mg-N m−2 d−1 in chambers with 0, 2.5 and 4.8 mg L−1 DO, and ammonia release was not significantly different between treatments. Beggiatoa sp. on the sediment surface of the moderately aerated chambers (2.5 and 4.8 mg L−1 DO) indicated that oxygen penetration into sediment was minimal. In contrast, ammonia accumulation was reversed in chambers with 10 mg L−1 DO, where oxygen penetration into sediment stimulated nitrification and denitrification. Ammonia accumulation in anoxic chambers (18.1 and 20.6 mg-N m−2 d−1) was similar to ammonia accumulation in the hypolimnion from July through September of 1998 (16.5 mg-N m−2 d−1). Areal hypolimnetic oxygen demand averaged 1.2 g O2 m−2 d−1 for 1994–1996 and 1998. Sediment oxygen demand (SOD) determined in experimental chambers averaged approximately 0.14 g O2 m−2 d−1. Continuous water currents at the sediment-water interface of 5–6 cm s−1 resulted in a substantial increase in SOD (0.38 g O2 m−2 d−1). The recommended oxygen delivery capacity of an oxygenation system, taking into account increased SOD due to mixing in the hypolimnion after system start-up, is 215 Mg d−1. Experimental results suggest that the system should maintain high levels of DO at the sediment-water interface (~10 mg L−1) to insure adequate oxygen penetration into the sediments, and a subsequent inhibition of ammonia accumulation in the hypolimnion of the lake.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlgren, I., F. Sörensson, T. Waara, K. Vrede, 1994. Nitrogen budgets in relation to microbial transformations in lakes. Ambio 23: 367–377.

    Google Scholar 

  • American Public Health Association (APHA), 1995. Standard Methods for the Examination of Water and Wastewater. American Public Health Association. Washington D.C. Approx. 1500 pp.

    Google Scholar 

  • American Water Works Association (AWWA), 1987. Research needs for treatment of iron and manganese. J. am. Wat. Works Assoc. 79: 119–122.

    Google Scholar 

  • Ashley, K. A.. 1983. Hypolimnetic aeration of a naturally eutrophic lake: physical and chemical effects. Can. J. Fish. aquat. Sci. 40: 1343–13.

    Google Scholar 

  • Auer, M. T.. N. A. Johnson, M. R. Penn, S. W. Effler, 1993. Measurement and verification of rates of sediment phosphorus release for a hypereutrophic urban lake. Hydrobiologia 253: 301–309.

    Article  CAS  Google Scholar 

  • Beutel, M. W., A. J. Home, 1997. Walker Lake Limnological Report, 1995–1996. University of California, Berkeley: 68 pp.

    Google Scholar 

  • Beutel, M. W., A. J. Horne, 1999. A review of the effects of hypolimnetic oxygenation on lake and reservoir water quality. Lake Reserv. Manage. 15: 285–297.

    Google Scholar 

  • Beutel, M. W., 2000. Dynamics and control of nutrient, metal and oxygen fluxes at the profundal sediment-water interface of lakes and reservoirs. Ph.D. Thesis. University of California, Berkeley: 198 pp.

    Google Scholar 

  • Beutel, M. W., A. J. Home, J. C. Roth, N. J. Barratt, 2001. Limnological effects of anthropogenic desiccation of a large, saline lake, Walker Lake, Nevada. Hydrobiologia 466 ( Dev. Hydrobiol. 162 ): 91–105.

    Google Scholar 

  • Brock, T. D., 1999. In Madigan, M. T. et al. (eds), Biology of Microorganisms. 9th edn. Prentice Hall. New Jersey: 579 pp.

    Google Scholar 

  • Cooke, G. D., R. E. Carlson, 1989. Reservoir management for water quality and THM precursor control. AWWA Research Foundation, Denver, CO: 387 pp.

    Google Scholar 

  • Cooper, J. J., D. L. Koch, 1984. Limnology of a desert terminal lake, Walker Lake Nevada. U.S.A. Hydrobiologia 118: 275–292.

    Google Scholar 

  • Doke, J. L., W. H. Funk, S. T. J. Juul, B. C. Moore, 1995. Habitat availability and benthic invertebrate population changes following alum treatment and hypolimnetic oxygenation in Newman Lake, Washington. J. Fresh. Ecol. 10: 87–100.

    Google Scholar 

  • Elliott, J., 1995. Job Progress Report, Walker Lake, 1994. Nevada Department of Wildlife. Fallon, Nevada: 29 pp.

    Google Scholar 

  • Elliott, J., 1996. Job Progress Report, Walker Lake, 1995. Nevada Department of Wildlife. Fallon, Nevada: 24 pp.

    Google Scholar 

  • Field, K. M., E. E. Prepas, 1997. Increased abundance and depth distribution of pelagic crustacean zooplankton during hypolimnetic oxygenation in a deep, eutrophic Alberta lake. Can. J. Fish. aquat. Sci. 54: 2146–2156.

    Google Scholar 

  • Gächter, R., B. Wehrli, 1998. Ten years of artificial mixing and oxygenation: no effect on the internal phosphorus loading of two eutrophic lakes. Envir. Sci. Technol. 32: 3659–3665.

    Google Scholar 

  • Gächter. R., J. S. Meyer, 1993. The role of micro-organisms in mobilization and fixation of phosphorus in sediments. Hydrobiologia 253: 103–121.

    Article  Google Scholar 

  • Gerstung, E. R., 1988. Status, life history, and management of the Lahontan cutthroat trout. Am. Fish. Soc. Symp. 4: 93–106.

    Google Scholar 

  • Goldman, J. C., D. A. Caron, M. R. Dennett, 1987. Regulation of gross growth efficiency and ammonia regeneration in bacteria by substrate C:N ratio. Limnol. Oceanogr. 32: 1239–1252.

    Google Scholar 

  • Graetz, D. A., D. R. Keeney, R. B. Aspiras, 1973. Eh status of lake sediment-water systems in relation to nitrogen transformations. Limnol. Oceanogr. 18: 908–917.

    Google Scholar 

  • Hammer, U. T., 1986. Saline lake ecosystems of the world. Dr W. Junk Publishers, Boston: 616 pp.

    Google Scholar 

  • Hansen, L. S., T. H. Blackburn, 1991. Aerobic and anaerobic mineralization in marine sediment microcosms. Mar. Ecol. Prog. Ser. 75: 283–291.

    Google Scholar 

  • Höhener, P., R. Gächter, 1994. Nitrogen cycling across the sediment-water interface in an eutrophie, artificially oxygenated lake. Aquat. Sci. 56: 115–132.

    Google Scholar 

  • Horne, A. J., 1989. Limnology and water quality of Camanche Reservoir in the 1987–88 drought as it relates to the fish facility problems. Report to EBMUD, Oakland, CA: 48 pp.

    Google Scholar 

  • Home, A. J., 1995. The 1993–94 Camanche Reservoir oxygenation experiment report. Report to EBMUD, Oakland, CA: 88 pp.

    Google Scholar 

  • Home, A. J., C. R. Goldman, 1994. Limnology. McGraw-Hill, Inc., New York: 576 pp.

    Google Scholar 

  • Home, A. J., J. C. Roth, N. J. Barratt, 1994. Walker Lake Nevada: state of the lake, 1992–1994. U.C. Berkeley Environmental Engineering and Health Sciences Laboratory. Report No. 94–2: 98 pp.

    Google Scholar 

  • Jellison, R., J. M. Melack, 1993. Algal photosynthetic activity and its response to meromixis in hypersaline Mono Lake, California. Limnol. Oceanogr. 38: 818–837.

    Google Scholar 

  • Jones, J. G., B. M. Simon, R. W. Horsley, 1982. Microbiological sources of ammonia in freshwater lake sediment. J. Gen. Microbiol. 182: 2823–2831.

    Google Scholar 

  • Jorgensen, B. B., N. P. Revsbech, 1983. Colorless sulfur bacteria Beggiatoa spp. and Thiovolum spp. in 02 and H2Smicrogradients. Appl. envir. Microbiol. 45: 1261–1270.

    Google Scholar 

  • Jorgensen. B. B., N. P. Revsbech, 1985. Diffusive boundary layers and the oxygen uptake of sediments and detritus. Limnol. Oceanogr. 30: 111–122.

    Google Scholar 

  • Josiam, R. M., H. G. Stefan, 1999. Effects of flow velocity on sediment oxygen demand: comparison of theory and experiments. J. am. Wat.. Res. Ass. 35: 433–439.

    Google Scholar 

  • Larson, D. P., D. W. Schults, K. W. Malueg. 1981. Summer internal phosphorus supplies in Shagawa Lake, Minnesota. Limnol. Oceanogr. 26: 740–753.

    Google Scholar 

  • Lorenzen, M. W., A. W. Fast, 1977. A guide to aeration/circulation techniques for lake management. EPA 600/3–77–004, U.S. EPA, Washington, D.C.

    Google Scholar 

  • Mackenthun, Y., H. G. Stefan, 1998. Effects of flow velocity on sediment oxygen demand: experiments. J. Envir. Engineer. 124: 222–230.

    Google Scholar 

  • Marsden, M. W., 1989. Lake restoration by reducing external phosphorus loading: the influence of sediment phosphorus release. Freshwat. Biol. 21: 139–162.

    Google Scholar 

  • Martin. S., S. W. Effler, J. Dobi, 1985. The problem of sediment oxygen demand in future reservoirs. Proc. 4th Annu. Conf. Int. Symp. N. Am. Lake Manage. Soc. 1984. McAfee, New Jersey.

    Google Scholar 

  • Melack, J. M., 1983. Large, deep salt lakes: a comparative limnological analysis. Hydrobiologia 105: 223–230.

    Article  Google Scholar 

  • Mengis, M., R. Gächter, B. Wehrli, 1997. Nitrogen elimination in two deep eutrophic lakes. Limnol. Oceanogr. 42: 1530–1543.

    Google Scholar 

  • Mobley, M. H., W. G. Brock. 1995. Widespread oxygen bubbles to improve reservoir releases. Lake Reserv. Manage. 11: 231–234.

    Google Scholar 

  • Moore, B. C., P. H. Chen, W. H. Funk, D. Yonge, 1996. A model for predicting lake sediment oxygen demand following hypolimnetic aeration. Wat. Resour. Bull. 32: l-9.

    Google Scholar 

  • Nakamura, Y., H. G. Stefan, 1994. Effects of flow velocity on sediment oxygen demand: theory. J. Envir. Engineer. 120: 996–1016.

    Google Scholar 

  • Ponnamperuma, F. N., 1972. Chemistry of submerged soils. In Bandy, N. C. (ed.), Advances in Agronomy. Academic Press, NY: 29–96.

    Google Scholar 

  • Prepas, E. E., J. M. Burke, 1997. Effects of hypolimnetic oxygenation on water quality in Amisk Lake, Alberta, a deep, eutrophic lake with high internal phosphorus loading rates. Can. J. Fish. aquat. Sci. 54: 2111–2120.

    Google Scholar 

  • Rasmussen, H., B. B. Jorgensen, 1992. Microelectrode study of seasonal oxygen uptake in a coastal sediment; role of molecular diffusion. Mar. Ecol. Prog. Ser. 81: 289–303.

    Google Scholar 

  • Revsbech, N. P., B. B. Jorgensen, T. H. Blackburn, 1980. Oxygen in the seabottom measured with a microelectrode. Science 207: 1355–1356.

    CAS  Google Scholar 

  • Rysgaard, S., N. Risgaard-Petersen, N. P. Sloth, K. Jensen, L. P. Nielsen, 1994. Oxygen regulation of nitrification and denitrification in sediments. Limnol. Oceanogr. 39: 1643–1652.

    Google Scholar 

  • Sartoris, J. J., J. R. Boehmke, 1987. Limnological effects of artificial aeration at Lake Cachuma, California, 1980–1984. U.S. Bureau of Reclamation. REC-ERC-87–10: 56 pp.

    Google Scholar 

  • Seitzinger, S. P., 1988. Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance. Limnol. Oceanogr. 33: 702–724.

    Google Scholar 

  • Soltero, R. A.. L. M. Sexton, K. I. Ashley, K. O. McKee, 1994. Partial and full lift hypolimnetic aeration of Medical Lake, WA to improve water quality. Wat. Res. 28: 2297–2308.

    Google Scholar 

  • Smith, S. A., D. R. Knauer, L. T. Wirth, 1975. Aeration as a lake management technique. Wisconsin Dept. Nat. Resour., Technical Bulletin No. 87: 39 pp.

    Google Scholar 

  • Snoeyink, V. L., D. Jenkins, 1980. Water Chemistry. John Wiley and Sons, New York.

    Google Scholar 

  • Taylor, R. E., 1972. The effects of increasing salinity of the Pyramid Lake fishery. University of Nevada, Reno: 12 pp.

    Google Scholar 

  • Thomas, J. M., 1995. Water budget and salinity of Walker Lake, Western Nevada. U.S. Geol. Surv. Fact Sheet 115–94: 4 pp.

    Google Scholar 

  • Van Duyl, F. C., W. Van Raaphorst, A. J. Kop, 1993. Benthic bacterial production and nutrient sediment-water exchange in sandy North Sea sediments. Mar. Ecol. Prog. Ser. 100: 85–95.

    Google Scholar 

  • Vincent, W. F., M. T. Downes, 1981. Nitrate accumulation in aerobic hypolimnia: relative importance of benthic and planktonic nitrifiers in an oligotrophic lake. Appl. envir. Microbiol. 42: 565–573.

    Google Scholar 

  • Zaw, M., B. Chiswell, 1999. Iron and manganese dynamics in lake water. Wat. Res. 33: 1900–1910.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Beutel, M.W. (2001). Oxygen consumption and ammonia accumulation in the hypolimnion of Walker Lake, Nevada. In: Melack, J.M., Jellison, R., Herbst, D.B. (eds) Saline Lakes. Developments in Hydrobiology, vol 162. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2934-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2934-5_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5995-6

  • Online ISBN: 978-94-017-2934-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics