The effects of altered levels of UV-B radiation on an Antarctic grass and lichen

  • D. Lud
  • A. H. L. Huiskes
  • T. C. W. Moerdijk
  • J. Rozema
Part of the Advances in Vegetation Science book series (AIVS, volume 18)


We report a long-term experiment on the photosynthetic response of natural vegetation of Deschampsia antarctica (Poaceae) and Turgidosculum complicatulum (Lichenes) to altered UV-B levels on Léonie Island, Antarctica.

UV-B above the vegetation was reduced by filter screens during two seasons. Half of the screens were transparent to UV-A and UV-B (ambient treatment) or absorbing UV-B and part of the UV-A (below-ambient treatment). Half of the wedge-shaped filters had side walls leading to an enhancement of the daily mean temperature in summer by 2–4 °C, simulating rising mean air temperature on the Antarctic Peninsula. The other half of the filters were without side walls resulting in close-to-ambient temperature underneath. Plots without filters served as controls.

UV-B supplementation of an extra 1.3 kJ UV-BBE was achieved using UV-mini-lamp systems during 15 days in the second season.

We found no evidence that altered incident UV-B levels and temperature had an effect on maximum photosystem II efficiency (F v /F m ) and effective photosystem II efficiency (∆F/F m ′) in both species. UV-B reduction did not influence contents of chlorophyll, carotenoids and methanol-soluble UV absorbing compounds in D. antarctica.

Flowering shoot length of D. antarctica was not affected by UV-B reduction. Temperature enhancement tended to result in longer inflorescence axes. Results of two austral summer seasons of UV- reduction in natural stands of D. antarctica and T complicatulum suggest that current ambient levels of UV-B do not have a direct effect on the photosynthetic performance and pigment contents of these species. Cumulative effects on growth have not been recorded after two years but can not be excluded on a longer term.

Key words

Antarctica Carotenoids Deschampsia antarctica Photosynthesis Turgidosculum complicatulum UV-B radiation UV-B supplementation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, D. J., Nogués, S. & Baker, N. R. 1999. Ozone depletion and increased UV-B radiation: is there a real threat to photosynthesis? J. Exp. Bot. 49: 1775–1788.Google Scholar
  2. Bachereau, F. & Asta, J. 1997. Effects of solar ultraviolet radiation at high altitude on the physiology and the biochemistry of a terricolous lichen (Cetraria islandica ( L.) Ach.). Symbiosis 23: 197–217.Google Scholar
  3. Bornman, J. F. & Sundby-Emanuelsson, C. 1995. Response of plants to UV-B radiation: some biochemical and physiological effects. Pp. 245–262. In: Smirnoff, N. (ed.), Environment and Plant Metabolism. Bios Scientific Publishers, Oxford.Google Scholar
  4. Caldwell, M. M. 1971. Solar ultraviolet radiation and the growth and development of higher plants. Pp. 133–177. In: Giese, A. C. (ed.), Photophysiology, Volume 6, Academic Press, New York.Google Scholar
  5. Convey, P. 1996. Reproduction of Antarctic flowering plants. Antarctic Sci. 8: 127–134.Google Scholar
  6. Day, T. A., Ruhland, C. T., Grobe, C. W. & Xiong, F. 1999. Growth and reproduction of Antarctic vascular plants in response to warming and UV radiation reductions in the field. Oecologia 119: 24–35.Google Scholar
  7. Dring, M. J., Makarov, V., Schoschina, E., Lorenz, M. & Luning, K. 1996. Influence of ultraviolet-radiation on chlorophyll fluorescence and growth in different life-history stages of three species of laminaria (phaeophyta). Mar. Biol. 126: 183–191.Google Scholar
  8. Edwards, J. A. & Smith, R. I. L. 1998. Photosynthesis and respiration of Colobanthus quitensis and Deschampsia antarctica from the maritime Antarctic. Brit. Antarctic Survey Bull. 81: 43–63.Google Scholar
  9. Fowbert, J. A. & Smith, R. I. L. 1994. Rapid population increases in native vascular plants in the Argentine Islands, Antarctic Peninsula. Arctic Alpine Res. 26: 290–296.Google Scholar
  10. Green, A. E. S., Sawada, T. & Shettle, E. P. 1974. The middle ultraviolet reaching the ground. Photochem. Photobiol. 19: 251–259.Google Scholar
  11. Green, T. G., Schroeter, B. & Sancho. L. G. 1999. Plant life in Antarctica. Pp. 495–543. In: Pugnaire, F. I. & Valladarcs, F. (eds), Handbook of Functional Plant Ecology. Marcel Dekker, New York.Google Scholar
  12. Gremmen, N. J. M., Huiskes, A. H. L. & Francke, J. W. 1994. Epilithic macrolichen vegetation of the Argentine Islands, Antarctic Peninsula. Antarctic Sci. 6: 463–471.Google Scholar
  13. Gremmen, N. J. M., Huiskes, A. H. L. & Francke, J. W. 1995. Standing crop of the coastal macrolichen Mastodia resselata, and its relationship to nutrient concentrations, on Petermann Island. Antarctica. Lichenologist 27: 387–394.Google Scholar
  14. Grobe, C. W., Ruhland, C. T. & Day, T. A. 1997. A new population of Colobnnthus quitensis near Arthur Harbour. Antarctica: Correlating recruitment with warmer summer temperatures. Arctic Alpine Res., 29: 217–221.Google Scholar
  15. Gwynn-Jones, D. & Johanson, U. 1996. Growth and pigment production in two subarctic grass species under four different UV-B irradiation levels. Physiol. Plant. 97: 701–707.Google Scholar
  16. Heide-Jorgenson, H. S. & Johnsen, 1. 1995. Analysis of surface structures of Cladonia ntitis podetia in historic and recent collections from Greenland. Can. J. Bot. 73: 457–464.Google Scholar
  17. Huiskes, A. H. L., Gremmen, N. J. M. & Francke, J. W. 1997. Morphological effects on the water balance on Antarctic foliose and fruticose lichens. Antarctic Sci., 9: 36–42.Google Scholar
  18. Huiskes, A. H. L., Lud, D., Moerdijk-Poortvliet, T. C. W. & Rozema, J. 1999. Impact of UV-B radiation on Antarctic terrestrial vegetation. Pp. 313–337. In: Rozema, J. (ed.), Stratospheric oOzone Depletion; the Effects of Enhanced UV-B Radiation on Terrestrial Ecosystem. Backhuys Publishers. Leiden.Google Scholar
  19. Huiskes, A. H. L., Lud, D. & Moerdijk-Poortvliet, T. C. W. 2000. Responses to UV-B radiation in terrestrial Antarctic vegetation. Pp. 252–257. In: Davison, W. et. al. (eds), Antarctic Ecosystems: Models for Wider Understanding. Caxton Press, Christchurch.Google Scholar
  20. Huiskes, A. H. L., Lud, D. & Moerdijk-Poortvliet, T. C. W. 2001. Field research on the effects of UV-B filters on terrestrial antarctic vegetation. Plant Ecol. 154: 75–86 (this volume).Google Scholar
  21. Jones, A. E. & Shanklin, J. D. 1995. Continued decline of total ozone over Halley, Antarctica, since 1985. Nature 376: 409–411.CrossRefGoogle Scholar
  22. King, J. C. 1994. Recent climate variability in the vicinity of the Antarctic Peninsula. Int. J. Clim. 14: 357–369.Google Scholar
  23. Liu, L. Gitz, D. C. III & McClure, J. W. 1995. Effects of UV-B on flavonoid, ferulic acid, growth and photosynthesis in barley primary leaves. Physiol. Plant. 93: 725–733.Google Scholar
  24. Madronich. S., McKenzie, R. L., Caldwell, M. & Björn, L. 0. 1995. Changes in ultraviolet radiation reaching the earth’s surface. Ambio 24: 143–152.Google Scholar
  25. Montiel, P., Smith, A., Keiller, D. 1999. Photosynthetic responses of selected Antarctic plants to solar radiation in the Southern maritime Antarctic. Polar Res. (in press).Google Scholar
  26. Nogués, S. & Baker, N. R. 1995. Evaluation of the role of damage to photosystem 11 in the inhibition of CO, assimilation in pea leaves on exposure to UV-B radiation. Plant Cell Environ. 18: 781–787.Google Scholar
  27. Olech, M. 1990. Preliminary studies on ornithocoprophilous lichens of the Arctic and Antarctic regions. Proc. NIPR Symp. Polar Biol. 3: 218–223.Google Scholar
  28. Post, A. & Larkum, A. W. D. 1993. UV-absorbing pigments, photosynthesis and UV exposure in Antarctica: comparison of terrestrial and marine algae. Aquatic Bot. 45: 231–243.Google Scholar
  29. Redon, J. 1985. Liquettes Antareticos. Instituto Antartico Chileno, Santiago, 123 pp.Google Scholar
  30. Rozema, J.. Van de Staaij, J., Meijkamp, B., Lud, D., Moerdijk, T. & Huiskes, A. 1997. Stratospheric ozone depletion and effects of enhanced UV-B radiation on terrestrial antarctic plants: the methodology of a mini-UV-B supplementation system. Circumpolar J. 12: 43–48.Google Scholar
  31. Rozema, J., Brockman, Lud, D., Huiskes, A., Moerdijk, T., De Bakker, N., Meijkamp, B. B. & Van Beem, A. 2001. Consequences of depletion of stratospheric ozone for terrestrial antarctic ecosystems: the response of Deschamp.sia dntarctica to enhanced UV-B radiation in a controlled environment. Plant Ecol. 154: 101–115 (this volume).Google Scholar
  32. Ruhland. C’. T. & Day, T. A. 1997. Leaf screening characteristics of Antarctic vascular plants. Bull. Ecol. Soc. Am. 78: 305.Google Scholar
  33. Schroeter. B., Olech, M., Kuppen. L. & Heitland, W. 1995. Ecophysiological investigations of Usnea cntarfrica in the maritime Antarctic. 1. Annual microclimatic conditions and potential primary production. Antarctic Sci. 7: 251–260.Google Scholar
  34. Searles. P. S., Flint, S. D., Diaz, S. B., Rousseaux, M. C., Ballare, C. L. & Caldwell, M. M. 1999. Solar ultraviolet-B radiation influence on Sphagnum bog and Carex fen ecosystems: first field season findings in Tierra del Fuego. Argentina. Global Change Biol. 5: 225–234.Google Scholar
  35. Smith, R. I. L. 1984. Terrestrial plant biology of the sub-Antarctic and Antarctic. Pp. 61–162. In: Laws, R. M. (ed.), Antarctic Ecology, volume I. Academic Press, London.Google Scholar
  36. Smith, R. I. L. 1985. Nutrient cycling in relation to biological productivity in Antarctic and sub-antarctic terrestrial and freshwater ecosystems. Pp. 138–155. In: Siegried, W. R., Condy, P. R. & Laws, R. M. (eds), Antarctic Nutrient Cycles and Food Web. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  37. Smith. R. I. L. 1994. Vascular plants as hioindicators of regional warming in Antarctica. Oecologia 99:. 322–328.Google Scholar
  38. Smith, R. I. I.. & Poncet, S. 1987. Desncamipsia antarctic(’ and CoIobnnthus in the Terra Firma Islands. Brit. Antarctic Survey Bull. 74: 31–35.Google Scholar
  39. Statsoft. inc. 1998. Statistica for windows. StatSoft, Tulsa.Google Scholar
  40. Streb, B., Feierabend, J., & Bligny, R. 1997. Resistance to photoinhihition of photosystem II and catalase and antioxidative protection in high mountain plants. Plant Cell Environ. 20: 1030–1040Google Scholar
  41. Swanson. A. & Fahselt, D. 1997. Effects of ultraviolet on polyphe- nolics of Unlbiliearia americans. Can. J. Bot. 75: 284–289.Google Scholar
  42. Swanson, A., Fahselt, D. R. & Smith, D. 1996. Phenolic levels in Umbilicarid americana in relation to enzyme polymorphism, altitude and sampling date. Lichenologist. 28: 331–339.Google Scholar
  43. Tosseraros. M. & Rozema, J. 1995. Effects of ultraviolet- B radiation (UV-B) on growth and physiology of the dune grassland species Caloniagrostis epigeio.c. Environ. Pollut. 89: 209–214.Google Scholar
  44. Wright. S. W.. Jeffery, S. W., Mantoura, R. F. C., Llewellyn. C. A., Björnland. T., Repeta, D. & Welsehmeyer, N. 1991. Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Mar. Ecol. Progress Ser. 77: 183–196.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • D. Lud
    • 2
    • 1
  • A. H. L. Huiskes
    • 2
    • 1
  • T. C. W. Moerdijk
    • 2
    • 1
  • J. Rozema
    • 2
    • 3
  1. 1.Netherlands Institute of EcologyYersekeThe Netherlands
  2. 2.Centre for Estuarine and Coastal EcologyYersekeThe Netherlands
  3. 3.Department of Systems Ecology, Faculty of BiologyVrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations