Advertisement

Field research on the effects of UV-B filters on terrestrial Antarctic vegetation

  • A. H. L. Huiskes
  • D. Lud
  • T. C. W. Moerdijk-Poortvliet
Chapter
Part of the Advances in Vegetation Science book series (AIVS, volume 18)

Abstract

Patches of vegetation of six common species growing on Léonie Island (67°35′ S, 68°20′ W), Antarctic Peninsula region were covered with either UV-B transparent perspex screens or UV-B absorbing screens. Uncovered plots served as a control. Temperature and relative humidity were monitored during the austral summer under and outside the screens. The mean effective PSII quantum efficiency showed significant differences among the species, but not between the UV-B treatments. It was concluded that the temperature and the moisture status of the vegetation obscured any possible influence of UV-B treatment on the tteffective PSII quantum efficiency. he usefulness of various UV-B exclusion and supplementation methods used to study the influence of UV-B in the field is discussed.

Key words

Alga Antarctica Grass Lichen Moss Ozone depletion Photosynthetic efficiency. UV-B filters UV-B radiation UV-B supplementation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, D. J., Nogués, S. * Baker, N. R. 1999. Ozone depletion and increased UV-B radiation: is there a real threat to photosynthesis? J. Exp. Bot. 49: 1775–1788.Google Scholar
  2. Bacherau, F. 1997. Effets de l’ exclusion sélective du rayonnement solaire (visible et UV) de haute altitude sur la biochimie et la physiologie de divers modèles végétaux: Pisum sativum L. (pois cultivé), Sedum album L. (orpin blanc) et Cetraria islandica (L.) Arch. (lichen terricole). Thesis, University Jouseph Fourier, Grenoble, 175 pp.Google Scholar
  3. Baker, N. R., Nogués, S. * Allen, D. J. 1997. Photosynthesis and photoinhibition. Pp. 95–111. In: Lumsden, P. J. (ed.), Plants and UV-B, Responses to Environmental Change. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  4. Blumthalcr, M. * Ambach, W. 1990. Indication of increasing solar ultra-violet-B radiation flux in Alpine regions. Science 248: 206–208.Google Scholar
  5. Bolhàr-Nordenkampf, H. R., Long, S. P., Baker, N. R., Oquist, G., Schreiber, U. * Lechner, E. G. 1989. Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation. Funct. Ecol. 3: 497–514.Google Scholar
  6. Caldwell, M. M., Teramura, A. H. * Tevini, M. 1989. The changing solar ultraviolet climate and the ecological consequences for higher plants. Trends Ecol. Evol. 4: 363–367.Google Scholar
  7. Cen, Y P. * Bornman, J. F. 1990. The response of bean plants to UV-B radiation under different irradiance of background visible light. J. Exp. Bot. 41: 1489–1495.Google Scholar
  8. Day, T. A., Ruhland, C. T., Grobe, C. W. * Xiong, F. 1999. Growth and reproduction of Antarctic vascular plants in response to warming and UV radiation reductions in the field. Oecologia 119: 24–35.Google Scholar
  9. Deckmyn, G., Martens, C. * lmpens, I. 1994. The importance of the ratio UV-B/photosynthetic active radiation (PAR) during leaf development as determining factor of plant sensitivity to increased UV-B irradiance: effects on growth, gas exchange and pigmentation of bean plants (PbaseoIus vulgaris cv. Label). Plant, Cell Environ. 17: 295–301.Google Scholar
  10. Farman, J. C., Gardiner, B. G. * Shanklin, J. D. 1985. Large losses of total ozone in Antarctica reveal seasonal C105/NOx interaction. Nature 315: 207–210.Google Scholar
  11. Frederick, J. E. * Snell, H. E. 1988. Ultraviolet radiation levels during the Antarctic spring. Science 241: 438–440.Google Scholar
  12. Frederick, J. E., Snell, H. E * Haywood, E. K. 1989. Solar ultraviolet radiation at the earth’s surface. Photochem. Photobiol. 50: 443–450.Google Scholar
  13. Genty, B., Briantais, J.-M. * Baker, N. 1989. The relationship between the quantum yield of photosdynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990: 87–92.Google Scholar
  14. Green, A. E. S., Sawada, T. * Shettle. E. P. 1974. The middle ultraviolet reaching the ground. Photochem. Photobiol. 19: 251–259.Google Scholar
  15. Huiskes, A. H. L., Lud, D, Moerdijk-Poortvliet, T. C. W. * Rozema, J. 1999. Impact of UV-B radiation on antarctic terrestrial vegetation. Pp. 313–337. In: Rozema, J. (ed.), Stratospheric Ozone Depletion; the Effects of Enhanhced UV-B Radiation on Terrestrial Ecosystems. Backhuys Publishers, Leiden.Google Scholar
  16. Huiskes, A. H. L., Lud, D. * Moerdijk-Poortvliet, T. C. W. 2000. Responses to UV-B radiation in terrestrial antarctic vegetation. Pp. 252–257. In: Davison W. et al. (eds), Antarctic Ecosystems: Models for Wider Understanding. Caxton Press, Christchurch.Google Scholar
  17. Jackson, A. E. * Seppelt, R. D. 1997. Physiological adaptations to freezing and UV radiation exposure in Prasiola crispa, an Antarctic terrestrial alga. Pp. 226–233. In: Battaglia, B., Valencia, J. * Walton, D. H. W. (eds), Antarctic Communities: Species, Structure and Survival. Cambridge University Press, Cambridge.Google Scholar
  18. Kerr, J. B. * McElroy, C. T. 1993. Evidence for large upward trends of ultraviolet-B radiation linked to ozone depletion. Science 262: 1032–1034.Google Scholar
  19. Krause, G. H. * Weis, E. 1991. Chlorophyll fluorescence and photosynthesis: the basics. Ann. Rev. Plant Physiol. Plant Mol. Biol. 43: 3 13–349.Google Scholar
  20. Lud, D., Huiskes, A. H. L., Moerdijk, T. C. W. * Rozema, J. 2001. The effects of altered levels of UV-B radiation on an Antarctic grass and lichen. Plant Ecol. 154: 87–99 (this volume).Google Scholar
  21. McLeod, A. R. 1997 Outdoor supplementation systems for studies of the effects of increased UV-B radiation. Plant Ecol. 128: 7892.CrossRefGoogle Scholar
  22. Rozema, J., Van de Staaij J. W. M. * Tosserams M. 1997a. Effects of UV-B radiation on plants from agro-and natural ecosystems. Pp. 213–232. In: Lumsden, P. J. (ed.), Plants and UV-B, Responses to Environmental Change. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  23. Rozema, J., Van de Staaij, J., Björn, L. O. * Caldwell, M. 1997b. UV-B as an environmental factor in plant life: stress and regulation. Trends Ecol. Evol. 12: 22–28.Google Scholar
  24. Rozema, J., Broekman, R., Lud, D., Huiskes, A., Moerdijk, T., De Bakker, N., Meijkamp, B. B. * Van Beem, A. 2001. Consequences of depletion of stratospheric ozone for terrestrial antarctic ecosystems: the response of Deschampsia atuarciica to enhanced UV-B radiation in a controlled environment. Plant Ecol. 154: 101–115 (this volume).Google Scholar
  25. Santas, R., Koussoulaki, A. * Wider, D.-P. 1997. In assessing biological UV-B effects, natural fluctuations of solar radiation should be taken into account. Plant Ecol. 128: 93–97.CrossRefGoogle Scholar
  26. Schreiber, U., Bilger, W., Klughammer, C. * Neubauer, C. 1988. Application of the PAM Iluorometer in stress detection. Pp. 1511.55. In: Lichtenthaler, K. H. (ed.), Applications of Chlorophyll Fluorescence. Kluwer Academic Publishers, Dordrecht.Google Scholar
  27. Schroeter, B. 1994. In situ photosynthetic differentiation of the green algal and the cyanohacterial photohiont in the crostose lichen Plecopsis contortup/icata. Oecologia 98: 212–220.CrossRefGoogle Scholar
  28. SCOPE 1992. Effects of increased ultraviolet radiation on global ecosystems. Proceedings of a workshop arranged by the Scientific Committee on Problems of the Environment (SCOPE), Tramariglio, Sardinia, 47 pp.Google Scholar
  29. Searles, P. S., Flint, S. D., Díaz, S. B., Rousseaux, M. C., Ballaré, C. L. * Caldwell, M. M. 1999. Solar ultraviolet-B radiation influence on Sphagnum hog and Carex fen ecosystems: first field season findings in Tierra del Fuego, Argentina. Global Change Biol. 5: 225–234.Google Scholar
  30. Teramura, A. H. 1980. Effects of ultraviolet-B irradiance on soybean. Interaction between ultraviolet-B and photosynthetically active radiation on net photosynthesis, dark respiration, and transpiration. Plant Physiol. 65: 483–488.Google Scholar
  31. Teramura, A. H. * Sullivan J. H. 1994. Effects of UV-B radiation on photosynthesis and growth of terrestrial plants. Photosynt. Res. 39: 463–473.Google Scholar
  32. Wilkinson, L. 1988. SYSTAT, the system for statistics. Systat Inc., and cryptogams. Pp. 243–257. In: Weiler, C. S. * Penhale, P. A. Evanston. (eds), Ultraviolet Rradiation in Antarctica: Measurements andGoogle Scholar
  33. Wynn-Williams, D. D. 1994. Potential effects of ultraviolet radiation Biological Effects. Antarctic Research Series, Vol. 62. on Antarctic primary terrestrial colonizers: cyanobacteria, algae and cryptogams. Pp. 243–257. In: Weiler, C. S. * Penhale, P. A. (eds), Ultraviolet Rradiation in Antarctica: Measurements and Biological Effects. Antarctic Research Series, Vol. 62.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • A. H. L. Huiskes
    • 1
  • D. Lud
    • 1
  • T. C. W. Moerdijk-Poortvliet
    • 1
  1. 1.Netherlands Institute of EcologyCentre for Estuarine and Coastal EcologyYersekeThe Netherlands

Personalised recommendations