Skip to main content

Nutrient availability influences UV-B sensitivity of Plantago lanceolata

  • Chapter
Responses of Plants to UV-B Radiation

Part of the book series: Advances in Vegetation Science ((AIVS,volume 18))

  • 225 Accesses

Abstract

Seeds of Plantago lanceolata were collected in a dune grassland ecosystem in the Netherlands. Plants were grown in a greenhouse for 61 days under either low or high nutrient conditions and were exposed to four different levels of biologically effective UV-B radiation. The highest UV-B exposure level simulated 30% reduction of the stratospheric ozone layer during summertime in the Netherlands. Total biomass production of plants at low nutrient supply was 50% lower compared to plants grown at high nutrient supply, while net photosynthesis was decreased by only 12%. Increased levels of UV-B reduced biomass production under non-limiting nutrient conditions only. Biomass production of plants grown at limited nutrient supply was not affected by UV-B. This response was correlated to increased accumulation of carbohydrates under nutrient limitation, which agrees well with the carbon/nutrient balance hypothesis. It is concluded that the increased accumulation of carbon in nutrient-stressed plants, may lead to a reduction of UV-B induced damage because of increased foliar UV-B absorbance by enhanced accumulation of phenolic compounds and leaf thickening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamse, P. & Britz, S. J. 1992. Amelioration of UV-B damage under high irradiance. 1: Role of photosynthesis. Photochem. Photobiol. 56: 645–650.

    Article  CAS  Google Scholar 

  • Arnon. D. I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoxidase in Beta vulgaris. Plant Physiol. 24: 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Balakumar, T., Hani Babe Vincent, V. & Paliwal, K. 1993. On the interaction of UV-B radiation (280–315 nm) with water stress in crop plants. Physiol. Plant. 87: 217–222.

    Article  CAS  Google Scholar 

  • Ballaré, C. L., Barnes, P. W. & Flint, S. D. 1995. Inhibition of hypocotyl elongation by ultraviolet-B radiation in de-etiolating tomato seedling. I The photoreceptor. Physiol. Plant. 93: 584–592.

    Google Scholar 

  • Barnes, P. W., Flint, S. D. & Caldwell, M. M. 1990. Morphological responses of crop and weed species of different growth forms to ultraviolet-B radiation. Am. J. Bot. 77: 1354–1360.

    Google Scholar 

  • Biggs, R. H., Kossuth, S. V. & Teramura, A. H. 1981. Response of 19 cultivars of soybeans to ultraviolet-B irradiance. Physiol. Plant. 53: 19–26.

    Google Scholar 

  • Blumthaler, M. & Ambach, W. 1990. Indication of increasing solar ultraviolet-B radiation flux in alpine regions. Science 248: 206.

    Article  PubMed  CAS  Google Scholar 

  • Bogenrieder, A. & Douté, Y. 1982. The effect of UV on photosynthesis and growth in dependence of mineral nutrition (Lactuca stair L. and Rnerexalpinus L.). Pp. 164–168. In: Bauer, H. et al. (eds), Biological Effect of UV-B Radiation. Munich, Germany.

    Google Scholar 

  • Bornman, J. F. & Teramura, A. H. 1993. Effects of ultraviolet-B radiation on terrestrial plants. Pp. 427–471. In: Young, A. R. et al. (eds), Environmental UV Photohiology. Plenum Press, New York.

    Google Scholar 

  • Bornman, J. F. & Vogelmann, T. C. 1991. Effect of UV-B radiation on leaf optical properties measured with fibre optics. J. Exp. Bot. 42: 547–554.

    Google Scholar 

  • Bryant, J. P., Chapin, F. S. & Klein, D. R. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate hcrbivory. Oikos 40: 357–368.

    Google Scholar 

  • Caldwell, M. M. 1971. Solar UV irradiation and the growth and development of higher plantsPp. 131–177 In: Giese, A. C. (ed.), Photophysiology, Vol. 6. Academic Press, New York.

    Google Scholar 

  • Caldwell, M. M. 1983. Internal filters: Prospects for CV-acclimation in higher plants. Physiol. Plant. 58: 445–450.

    Google Scholar 

  • Cen, Y-P. & Bornman, J. F. 1990. The response of bean plants to UV-B radiation under different irradiantes of background visible light. J. Exp. Bot. 41: 1489–1495.

    Google Scholar 

  • Deckmyn, G. Impens,1. 1997. Combined effects of enhanced UV-B radiation and nitrogen deficiency on the growth, composition and photosynthesis of rye (Seeale cereale). Plant Ecol. 128: 235–240.

    Google Scholar 

  • Dijkstra, P. 1990. Cause and effect of differences in specific leaf area. Pp. 125–140. In: Lambers, H. et al. (eds), Causes and Consequences of Variation in Growth Rate and Productivity of Higher Plants. SPB Academic Publishing, The Hague, the Netherlands.

    Google Scholar 

  • Ernst, W. H. O.. Van de Staaij, J. W. M. & Nelissen, H. J. M. 1997. Reaction of savanna plants from Botswana on UV-B radiation. Plant Ecol. 128: 162–170.

    Google Scholar 

  • Fajer, E. D., Bowers, M. D. & Bazzaz, F. A. 1992. The effect of nutrients and enriched CO2 environments on production of carbonbased allelochemicals in Planmgo: a test of the carbon/nutrient balance hypothesis. Am. Nat. 140: 707–723.

    Google Scholar 

  • Farrar, J. F. & Williams, M. L. 1991. The effects of increased atmospheric carbon dioxide and temperature on carbon partitioning, source-sink relations and respiration. Plant Cell Environ. 14: 819–830.

    Article  CAS  Google Scholar 

  • Green, A. E. S., Cross. K. R. & Smith, L. A. 1980. Improved analytic characterization of ultraviolet skylight. Photochem. Photobiol. 31: 59–65.

    Google Scholar 

  • Kirsten, W. G. 1979. Automatic methods for the simultaneous determination of carbon, hydrogen, nitrogen and sulfur, and for sulfur alone in organic and inorganic materials. Anal. Chem. 51: 1173–1197.

    Google Scholar 

  • Kramer, G. F., Krizck, D. T. & Mirecki, R. M. 1992. Influence of photosynthetically active radiation and spectral quality on UVB-induced polyamine accumulation in soybean. Phytochem. 31: 1119–1125.

    Article  CAS  Google Scholar 

  • Krupa, S. V. & Kickert, R. N. 1989. The greenhouse effect: The impacts of ultraviolet-B (UV-B) radiation, carbon dioxide (CO?) and ozone (03) on vegetation. Environ. Pollut. 61: 263–293.

    Google Scholar 

  • Lambers, H. 1993. Rising CO2, secondary plant metabolism, plant-herbivore interactions and litter decomposition: Theoretical considerations. Vegetatio 104 /105: 263–271.

    Article  Google Scholar 

  • Landry, L. G., Chapple, C. C. S. & Last, R. L. 1995. Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage. Plant Physiol. 109: 1159–1166.

    CAS  Google Scholar 

  • Larson, R. A. 1988. The antioxidants of higher plants. Phytochem. 27: 969–978.

    Article  CAS  Google Scholar 

  • Li, J., Ou-Lee, T., Raba, R., Amundson, R. G. & Last, R. L. 1993. Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell 5: 171–179.

    Google Scholar 

  • Lois, R. Buchanan, B. B. 1994. Severe sensitivity to ultraviolet radiation in an Arabidopsis mutant deficient in flavonoid accumulation. II Mechanisms of UV-resistance in Arabidopsis. Planta 194: 504–509.

    Google Scholar 

  • Madronich, S., McKenzie, R. L., Caldwell, M. M. & Bjorn, L. O. 1995. Changes in ultraviolet radiation reaching the earth’s surface. Ambio 24: 143–152.

    Google Scholar 

  • Morris, D. L. 1948. Quantitative determination of carbohydrates with Dreywood’s anthrone reagent. Science 107: 254–255.

    Article  PubMed  CAS  Google Scholar 

  • Murali, N. S & Teramura, A. H. 1985. Effects of UV-B irradiance on soybean. VI. Influence of phosphorus nutrition on growth and flavonoid content. Physiol. Plant. 63: 413–416.

    Google Scholar 

  • Murali, N. S. & Teramura, A. H. 1986. Effectiveness of UV-B radiation on the growth and physiology of field-grown soybean modified by water stress. Photochem. Photobiol. 44: 215–219.

    Google Scholar 

  • Murali, N. S. & Teramura, A. H. 1987. Insensitivity of soybean photosynthesis to ultraviolet-B radiation under phosphorus deficiency. J. Plant Nutr. 10: 501–515.

    Google Scholar 

  • Murali, N. S., Teramura, A. H. Randall, S. K. 1988 Response differences between two soybean cultivars with contrasting UV-B radiation sensitivities. Photochem. Photobiol. 44: 1–5.

    Google Scholar 

  • Musil, C. F. & Wand, J. E. 1994. Differential stimulation of an arid-environment winter ephemeral Dimorphoteca pluvialis ( L.) Moench by ultraviolet-B radiation under nutrient limitation. Plant Cell Environ. 17: 245–255.

    Google Scholar 

  • Robberecht, R. & Caldwell, M. M. 1978. Leaf epidermal transmittance of ultraviolet radiation and its implications for plant sensitivity to ultraviolet-radiation induced injury. Oecologia 32: 277–287.

    Google Scholar 

  • Ros, J. Tevini, M. 1995. Interaction of UV-radiation and IAA during growth of seedlings and hypocotyl segments of sunflower. J. Plant Physiol. 146: 295–302.

    Article  CAS  Google Scholar 

  • Rozema, J., Van de Staaij, J. W. M. & Tosserams, M. 1997. Effects of UV-B radiation on plants from agro-and natural ecosystems. Pp. 213–232 In: Lumsden, P. L. (ed), Plants and UV-B. Cambridge University Press, Cambridge.

    Chapter  Google Scholar 

  • Sokal, R. R. & Rohlf, F. J. 1981. Biometry. Freeman Press, San Fransisco, California, USA.

    Google Scholar 

  • Strid, Ä., Chow, W. S. & Anderson, J. M. 1994. UV-B damage and protection at the molecular level in plants. Photosynth. Res. 39: 475–489.

    Google Scholar 

  • Sullivan, J. H. 1997. Effects of increasing UV-B radiation and atmospheric CO2 on photosynthesis and growth: Implications for terrestrial ecosystems. Plant Ecol. 128: 194–206.

    Article  Google Scholar 

  • Sullivan, J. H. Teramura, A. H. 1994. The effects of UV-B radiation on loblolly pine. 3. Interaction with CO2 enhancement. Plant Cell Environ. 17: 311–317.

    Google Scholar 

  • Teramura, A. H. 1983. Effects of ultraviolet-B radiation on the growth and yield of crop plants. Physiol. Plant. 58: 415–427.

    Google Scholar 

  • Teramura, A. H. & Sullivan, J. H. 1994. Effects of UV-B radiation on photosynthesis and growth of terrestrial plants. Photosynth. Res. 39: 463–473.

    Google Scholar 

  • Tevini, M., Iwanzik, W. & Teramura, A. H. 1983. Effects of UV-B radiation on plants during mild water stress II. Effects on growth, protein and flavonoid content. Z. Pflanzenphysiol. 110: 459–467.

    Google Scholar 

  • Tosserams, M., Pais de Sà, A. & Rozema, J. 1996. The effect of solar UV radiation on four plant species occurring in a coastal grassland vegetation in The Netherlands. Physiol. Plant. 97: 731–739.

    Google Scholar 

  • Tosserams, M., Magendans, G. W. H. & Rozema, J. 1997. Differential effects of elevated ultraviolet-B radiation on plant species of a dune grassland ecosystem. Plant Ecol. 128: 266–281.

    Google Scholar 

  • Van de Staaij, J. W. M., Lenssen, G. M., Stroetenga, M. & Rozema, J. 1993. The combined effects of elevated CO2 and UV-B radiation on growth characteristics of Elvmus arhericus. Vegetatio 104 /105: 433–439.

    Article  Google Scholar 

  • Visser, A. J., Tosserams, M., Groen, M. W., Magendans, G. W. H. & Rozema, J. 1997. The combined effects of CO2 concentration and solar UV-B radiation on faba bean grown in open-top chambers. Plant Cell Environ. 20: 189–199.

    Article  PubMed  CAS  Google Scholar 

  • Von Caemmerer, S. & Farquhar, G. D. 1981. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 160: 320–329.

    Article  Google Scholar 

  • Yemm, E. W. & Willis, A. J. 1954. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 57: 508–514.

    PubMed  CAS  Google Scholar 

  • World Meteorological Organization 1994. Scientific assessment of ozone depletion. Executive summary of WMO Ozone report No. 37, pp. 1–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Tosserams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tosserams, M., Smet, J., Magendans, E., Rozema, J. (2001). Nutrient availability influences UV-B sensitivity of Plantago lanceolata . In: Rozema, J., Manetas, Y., Björn, LO. (eds) Responses of Plants to UV-B Radiation. Advances in Vegetation Science, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2892-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2892-8_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5353-4

  • Online ISBN: 978-94-017-2892-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics