Skip to main content

Is provitamin D a UV-B receptor in plants?

  • Chapter
Responses of Plants to UV-B Radiation

Part of the book series: Advances in Vegetation Science ((AIVS,volume 18))

Abstract

An hypothesis is presented that provitamin D (dehydrocholesterol and/or ergosterol) can act as a UV-B receptor in plants and algae. We also propose that the proportions between provitamins D, previtamins D, and vitamins D (D2 and D3), after calibration, can be used to evaluate UV-B exposure of phytoplankton and terrestrial vegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arami, S., Hada, M. & Tada, M. 1997a. Near-UV-induced absorbance change and photochemical decomposition of ergosterol in the plasma membrane of the yeast Saccharornvice.s cerevesiae. Microbiology 143: 1665–1671.

    Article  PubMed  CAS  Google Scholar 

  • Arami, S., Hada, M. & Tada, M. 1997b. Reduction of ATPase activity accompanied by photodecomposition of ergosterol by near-UV irradiation in plasma membranes prepared from Saccharomvices cerevesiae. Microbiology 143: 2465–2471.

    Article  PubMed  CAS  Google Scholar 

  • Beggs, C. J. & Welhnann, E. 1994. Photocontrol of flavonoid biosynthesis. pp. 733–751. In: Kendrick, R. E. & Kronenberg, G. H. M. (eds), Photomorphogenesis in Plants, 2nd ed. Kluwer Academic Publishers, Dordrecht.

    Chapter  Google Scholar 

  • Björn, L. O. 1999. UV-B effects: Receptors and targets. pp. 793–803. In: Singhal, G. S. et al. (cds), Concepts of Photobiology. Narosa Publishing House, New Delhi.

    Google Scholar 

  • Buchala, A. J. & Schmid, A, 1979. Vitamin D and its analogues as a new class of plant growth substances affecting rhizogencsis. Nature 280: 230–231.

    Article  CAS  Google Scholar 

  • Buchala, A. J. & Pythoud, F. 1988. Vitamin D and related compounds as plant growth substances. Physiol. Plant. 74: 391–396.

    Article  CAS  Google Scholar 

  • Buddecke, E. 1980. Grundriss der Biochemie ( 6. Aufl.). W. De Gruyter, Berlin.

    Google Scholar 

  • Buffenstein, R., Skinner, D. C.. Yahav, S. D.. Mooilley, G. P., Cavaleros, M.. Zachcn, D., Ross, F. P. & Pettifor, J. M. 1991. Effect of oral cholecalciferol supplementation at physiological and supraphysiological doses in naturally vitamin D3 deficient subterranean damara mole rats (Crvptomvs damarensis). J. Endocrinol. 131: 197–202.

    Google Scholar 

  • Cheplick, G. P. & Clay, K. 1988. Acquired chemical defenses of grasses: the role of fungal endophytes. Oikos 52: 309–318.

    Google Scholar 

  • Clay, K. 1990. Fungal endophytes of grasses. Annu. Rev. Ecol. Syst. 21: 275–297.

    Article  Google Scholar 

  • Curino, A., Skliar, M. & Boland, R. 1998. Identification of 7-dehydrocholesterol, vitamin D3, 25(OH)-vitamin D3 and I.25(OH)2-vitamin D3 in Solarium g1aueophv1lum cultures grown in absence of light. Biochim. Biophys. Acta 1425: 485–492.

    Article  PubMed  CAS  Google Scholar 

  • Feldman, D., Glorieux, F. H. & Pike, J. W. (eds) 1997. Vitamin D. Academic Press, New York.

    Google Scholar 

  • Fries, L. 1984. D-vitamins and their precursors as growth regulators in axenically cultivated marine macroalgae. J. Phycol. 20: 62–66.

    Article  CAS  Google Scholar 

  • Galkin, O. N. & Terenetskaya, I.P. 1999. ‘Vitamin D’ biodosimeter: basic characteristics and potential applications. J. Photochem. Photobiol. B: Biol. 53: 12–19.

    Article  CAS  Google Scholar 

  • Gershengorn, M. C., Smith, A. R. H., Goulston, G., Goad, T.. J., Goodwon, T. W. & Haines, T. H. 1968. The sterols of Ochromona.s danica and Ochromonas malhamensis. Biochemistry 7: 1698–1706.

    Article  PubMed  CAS  Google Scholar 

  • Gessner, M. O. & Schmitt, A. J. 1996. Use of solid-phase extraction to determine ergosterol concentrations in plant tissue colonized by fungi. Appt. Environ. Microbiol. 62: 415–419.

    CAS  Google Scholar 

  • Grandmougin-Ferjani, A., Schuler-Muller, I. & Hartmann, M.-A. 1997. Sterol modulation of the plasma membrane H+-ATPase activity from corn roots reconstituted into soybean lipids. Plant Physiol. 113: 163–174.

    PubMed  CAS  Google Scholar 

  • Hannach, G. & Sigleo, A. C. 1998. Photoinduction of UV-absorbing compounds in six species of marine phytoplankton. Mar. Ecol. Progr. Ser. 174: 207–222.

    Article  CAS  Google Scholar 

  • Havinga, E. 1973. Vitamin D, example and challenge. Experientia 29: 1181–1193.

    Article  PubMed  CAS  Google Scholar 

  • Hess, A. F. & Weinstock, M. 1924. Antirachitic properties imparted to inert fluids and green vegetables by ultraviolet radiation. J. Biol. Chem. 62: 301–313.

    CAS  Google Scholar 

  • Holick, M. F. 1989. Phylogenetic and evolutionary aspects of vitamin D from phytoplankton to humans. pp. 7–43. In: Pang, P. K. T. & Schreibman, M. P. (eds), Vertebrate Endocrinology: Fundamentals and Biomedical Implications, volume 3. Regulation of Calcium and Phosphate. Academic Press, New York.

    Google Scholar 

  • Holick, M. F. (ed.) 1999. Vitamin D: Molecular Biology, Physiology, and Clinical Applications (Nutrition and Health). Humana Press, Totowa, NJ 07512.

    Google Scholar 

  • Horst R. L., Reinhard(T. A., Russell J. R. & Napoli J. L. 1984. The isolation of vitamin D) and vitamin D3 from Medicago satira (alfalfa plant). Arch. Biochcm. Biophys. 231: 67–71.

    Article  CAS  Google Scholar 

  • Hsiao, K. C. & Björn, L. O 1982. Aspects of photoinduction and carotenogenesis in the fungus Verticittiurtr agaricinurr. Physiologia Plantarum 54: 235–238.

    Article  Google Scholar 

  • Imbrie, C. W. & Murphy, T. M. 1982. UV-action spectrum (254–405 nm) for inhibition of a K+-stimulated adenosine triphosphatase from the plasma membrane of Rosa damascctrn. Photochem. Photobiol. 36: 537–542.

    Article  CAS  Google Scholar 

  • Imbrie, C. W. & Murphy, T. M. 1984. Photoinactivation of detergent-solubilized plasma membrane ATPase from Rosa darer ascena. Plant Physiol. 74: 617–621.

    Article  PubMed  CAS  Google Scholar 

  • Jarvis, B. C. & Booth, A. 1981. Influence of indole-butyric acid, boron, sera -inositol, vitamin D2 and seedling age on adventitious root developmant in cuttings of Phaseolus aureus. Physiol. Plant. 53: 213–218.

    Article  CAS  Google Scholar 

  • MacLaughlin, J. A., Anderson, R. R. & Holick, M. F. 1982. Spectral character of sunlight modulates photosynthesis of previtamin D3 and its photoisomers in human skin. Science 216: 1001–1003.

    Article  PubMed  CAS  Google Scholar 

  • Mellanby, E. 1918. The part played by an `accessory factor’ in the production of experimental rickets. J. Physiol. (London) 52: 11–14.

    Google Scholar 

  • Moncousin, C. & Gaspar, T. 1983. Peroxidase as a marker for rooting improvement of Cvnara scolvmus L. cultured in vitro. Biocherr. Physiol. Pflanzen 178: 263–271.

    CAS  Google Scholar 

  • Napoli J. L., Reeve L. E., Eisman J. A., Schnoes, H. K. & DeLuca, H. F. 1977. Solanum glaucophyllum as source of I,25-dihydroxyvitamin D3. J. Biol. Chem. 252: 2580–2583.

    PubMed  CAS  Google Scholar 

  • Nevo, E. 1995. Mammalian evolution underground. The ecological- genetic-phenetic interfaces. Acta Theriologica, Suppl. 3: 9–31.

    Google Scholar 

  • Newsham, K. K., Lewis. G. C., Greenshade, P. D. & McLeod, A. R. 1998. Neotyphodium lolii, a fungal endophyte, reduces the fertility of Lolimn perenne exposed to elevated UV-B radiation. Ann. Bot. 81: 397–403.

    Article  Google Scholar 

  • Norman, T. C., Norman, A. W. 1993. Consideration of chemical mechanisms for the nonphotochemical production of vitamin D3 in biological systems. Bioorganic Med. Chem. Lett. 3: 1785–1788.

    Article  CAS  Google Scholar 

  • Patterson, G. W. 1971. The distribution of sterols in algae. Lipids 6: 120–127.

    Article  CAS  Google Scholar 

  • Patterson, G. W. 1974. Sterols of some green algae. Comparative Biochem. Physiol. 47B: 453–457.

    Google Scholar 

  • Pfoerter, K. & Weber, J. P. 1972. Photochcmic der Vitamin D-Rcihe. 1. Kinetik und Quantenausbeuten der Ergosterinhestrahlung hei L=253,4 nm. Helvetica Chimica Acta 55: 921–937.

    Article  Google Scholar 

  • Pitcher, T. & Buffenstein, R. 1995. Intestinal calcium transport in mole-rats (Cryptomys darnarensis and Heterocephalus glaber) is independent of both genomic and non-genomic vitamin D mediation. Exp. Physiol. 80: 597–608.

    PubMed  CAS  Google Scholar 

  • Pitcher. T., Buffenstein, R., Keegan, J. D., Moodley, G. P. & Yahav, S. 1992. Dietary calcium content, calcium balance and mode of uptake in a subterranean mammal, the damara mole-rat. J. Nutrition 122: 108–114.

    CAS  Google Scholar 

  • Pitcher, T., Sergeev, I. N. & Buffenstein, R. 1994. Vitamin D metabolism in the damara mole-rat is altered by exposure to sunlight, yet mineral metabolism is unaffected. J. Endocrinolol. 143: 367–374.

    Article  CAS  Google Scholar 

  • Pitcher, T., Pettifor, J. M. & Buffenstein, R. 1994. The effect of dietary calcium content and oral vitamin D3 supplementation on mineral homeostasis in a subterranean mole-rat, Cryptomys damaren.ris. Bone Mineral. 27: 145–157.

    Article  CAS  Google Scholar 

  • Portwich, A. & Garcia-Pichel, F. 2000. A novel prokaryotic UVB photoreceptor in the cyanobacterium Chlorogloeopsis PCC 6912. Photochem. Photohiol. 71: 493–498.

    Article  CAS  Google Scholar 

  • Pottier, R. H. & Russell, D. A. 1991. Quantum yield of a photochemical reaction. pp. 45–57. In: Valenzano, D. P., Pottier, R. H., Mathis, P., Douglas, R. H. (eds) Photobiological Techniques. Plenum Press, New York, pp. xiv+381.

    Chapter  Google Scholar 

  • Prema, T. P. & Raghuramulu, N. 1994. Free vitamin D3 metabolites in Cestrum diurnum leaves. Phytochemistry 37: 677–681.

    Article  CAS  Google Scholar 

  • Prema, T. P. & Raghuramulu, N. 1996. Vitamin D3 and its metabolites in the tomato plant. Phytochemistry 42: 617–620.

    Article  PubMed  CAS  Google Scholar 

  • Rambeck W. A., Kreutzberg O., Bruns-Droste C. & Zucker, H. 1981. Vitamin D-like activity of Trisetum flavescens. Z. Pllanzenphysiol. 104: 9–16.

    CAS  Google Scholar 

  • Redlin, S. C. & Carris, L. M. (eds) 1996. Endophytic fungi in grasses and woody plants: Systematics, ecology and evolution. The American Phytopathological Association (APS Press), St. Paul, Minnesota.

    Google Scholar 

  • Schuler, I., Milon, A., Nakatani, Y., Ourisson, G., Albrecht, A.-M., Beneviste, P. & Hartmann, M.-A. 1991. Differential effects of plant sterols on water permeability and on acyl chain ordering of soybean phosphatidylcholine hilayers. Proc. Nat. Acad. Sci. USA 88: 6926–6930.

    Article  PubMed  CAS  Google Scholar 

  • Siegel, M. C., Latch, G. C.M. & Johnson, M. C. 1987. Fungal endophytes of grasses. Annu. Rev. Phytopathol. 25: 293–315.

    Article  Google Scholar 

  • Steenbock, H. & Black, A. 1924. The induction of growth-promoting and calcifying properties in a ration by exposure to ultra-violet light. J. Biol. Chem. 61: 405–422.

    CAS  Google Scholar 

  • Stem, A. I., Schiff, J. A. & Klein, H. P. 1960. Isolation of ergosterol from Euglena graeilis; distribution among mutant strains. J. Protozool. 7: 52–55.

    Google Scholar 

  • Sugisaki, N., Welcher, M. & Monder, C. 1974. Lack of vitamin D3 synthesis by goldfish (Carassius auratus L.). Comp. Biochem. Physiol. 49B: 647–653.

    Google Scholar 

  • Sunita Rao, D. & Raghuramulu, N. 1996a. Food chain as origin of vitamin Din fish. Comp. Biochem. Physiol. 1 14A: 15–19.

    Google Scholar 

  • Sunita Rao, D. & Raghuramulu, N. 1996b. Lack of vitamin D3 synthesis in Tilapia mossamhica from cholesterol and acetate. Comp. Biochem. Physiol. 114A: 21–25.

    Article  Google Scholar 

  • Wasserman R. H. 1975. Vitamin D-like substances in Solammm malacoxvlon and other calcinogenic plants. Nutr. Rev. 33: 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Wasserman, R. H., Henion, J. D., Haussier, M. R. & McCain, T. A. 1976. Calcinogenic factor in Solarium malac2rylon: Evidence that it is 1,25-dihydroxyvitamin D3-glycoside. Science 194: 853–855.

    Google Scholar 

  • Webb, A. R., Kline, L. & Holick, M. F. 1988. Influence of season and latitude on on the cutaneous synthesis of vitamin D3: Exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin. J. Clin. Endocrinol. Metabolism 67: 373–378.

    Article  CAS  Google Scholar 

  • Zucker, H., Stark, H. & Rambeck, W. 1980. Light-dependent synthesis of cholecalciferol in a green plant. Nature 283: 68–69.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Björn, L.O., Wang, T. (2001). Is provitamin D a UV-B receptor in plants?. In: Rozema, J., Manetas, Y., Björn, LO. (eds) Responses of Plants to UV-B Radiation. Advances in Vegetation Science, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2892-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2892-8_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5353-4

  • Online ISBN: 978-94-017-2892-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics