Skip to main content

A New Semantics for the Epistemology of Geometry II: Epistemological Completeness of Newton—Galilei and Einstein—Maxwell Theory

  • Chapter
Reflections on Spacetime

Abstract

In [1, Coleman and Korté, appearing in this issue] we present the principles and analyses underlying a new approach to the epistemology of spacetime geometry. In this paper we apply this analysis to two spacetime theories. In particular, we show that Newton—Galilei theory is epistemically complete with respect to its spatial metric and that Einstein—Maxwell theory is epistemically complete with respect to its spacetime geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coleman, R. A. and Korté, H.: 1995, ‘A New Semantics for the Epistemology of Geometry I, Modeling Spacetime Structure’, this issue.

    Google Scholar 

  2. Coleman, R. A. and Korté, H.: 1980, ‘Jet Bundles and Path Structures’, The Journal of Mathematical Physics 21 (6), 1340–1351.

    Article  ADS  MATH  Google Scholar 

  3. Coleman, R. A. and Korté, H.: 1981, ‘Spacetime G-Structures and their Prolongations’, The Journal of Mathematical Physics 22 (11), 2598–2611.

    Article  ADS  MATH  Google Scholar 

  4. Coleman, R. A. and Korté, H.: 1982, ‘Erratum: Jet Bundles and Path Structures’, The Journal of Mathematical Physics 23(2), 345. Erratum of [2].

    Google Scholar 

  5. Coleman, R. A. and Korté, H.: 1982, ‘The Status and Meaning of the Laws of Inertia’, in The Proceedings of the Biennial Meeting of the Philosophy of Science Association, East Lansing, Michigan, pp. 257–274.

    Google Scholar 

  6. Coleman, R. A. and Korté, H.: 1984a, ‘Constraints on the Nature of Inertial Motion Arising from the Universality of Free Fall and the Conformal Causal Structure of Spacetime’, The Journal of Mathematical Physics 25 (12), 3513–3526.

    Article  ADS  MATH  Google Scholar 

  7. Coleman, R. A. and Korté, H.: 1984b, A Realist Field Ontology of the Causal-Inertial Structure (the Refutation of Geometric Conventionalism). University of Regina Preprint, 192 pages, March 1984. Final enlarged version, entitled The Philosophical and Mathematical Foundations of Spacetime Theories,to appear as a volume of The Synthese Library Series.

    Google Scholar 

  8. Coleman, R. A. and Korté, H.: 1987, ‘Any Physical, Monopole, Equation-of-Motion Structure Uniquely Determines a Projective Inertial Structure and an (n — 1)-Force’, The Journal of Mathematical Physics 28 (7), 1492–1498.

    Article  ADS  MATH  Google Scholar 

  9. Coleman, R. A. and Korté, H.: 1989, ‘All Directing Fields that are Polynomial in the (n — 1)-Velocity are Geodesic’, The Journal of Mathematical Physics 30 (5), 1030–1033.

    Article  ADS  MATH  Google Scholar 

  10. Coleman, R. A. and Korté, H.: 1990. ‘Harmonic Analysis of Directing Fields’, The Journal of Mathematical Physics 31 (1), 127–130.

    Article  ADS  MATH  Google Scholar 

  11. Coleman, R. A. and Korté, H.: 1990, ‘The Physical Initial Value Problem for the General Theory of Relativity’, in Cooperstock, F. I. and Tupper, B. (eds.), General Relativity and Relativistic Astrophysics, Singapore, pp. 188–193. World Scientific. Proceedings of the third Canadian Conference on General Relativity and Relativistic Astrophysics held in Victoria.

    Google Scholar 

  12. Coleman, R. A. and Korté, H.: 1991, ‘An Empirical, Purely Spatial Criterion for the Planes of F-Simultaneity’. Foundations of Physics 24 (4), 417–437.

    Article  ADS  Google Scholar 

  13. Coleman, R. A. and Korté. H.: 1992. ‘On Attempts to Rescue the Conventionality Thesis of Distant Simultaneity in STR’. Foundations of Physics Letters 5 (6). 535–571.

    Article  MathSciNet  ADS  Google Scholar 

  14. Coleman, R. A. and Korté, H.: 1992. ‘The Relation between the Measurement and Cauchy Problems of GTR’, in Sato, H. and Nakamura, T. (eds.), The Sixth Marcel Grossmann Meeting on General Relativity, World Scientific, pp. 97–119. Printed version of an invited talk presented at the meeting held in Kyoto, Japan, 23–29 June 1991.

    Google Scholar 

  15. Coleman, R. A. and Korté, H.: 1994a, ‘Constructive Realism’, in Majer, U. and Schmidt, H.-J. (eds.), Semantical Aspects of Spacetime Theories, Wissenschaftsverlag, pp. 67–81.

    Google Scholar 

  16. Coleman, R. A. and Korté, H.: 1994b ‘A Semantic Analysis of Model and Symmetry Diffeomorphisms in Modern Spacetime Theories’, in Majer, U. and Schmidt, H.-J. (eds.), Semantical Aspects of Spacetime Theories, Wissenschaftsverlag, Mannheim, pp. 83–94.

    Google Scholar 

  17. Crapo, E.: 1982, ‘The Tetrahedral-Octrahedral Truss’, Struct. Topol. 7, 51–61.

    MathSciNet  MATH  Google Scholar 

  18. Ehlers, J., Pirani, R. A. E. and Schild. A.: 1972, ‘The Geometry of Free Fall and Light Propagation’, in L. O’ Raifeartaigh, L. O. (ed.), General Relativity, Papers in Honour of J. L. Synge, Clarendon Press, Oxford, pp. 63–84.

    Google Scholar 

  19. Guillemin, V. and Sternberg, S.: 1964, ‘An Algebraic Model of Transitive Differential Geometry’, Bull. Amer. Math. Soc. 70, 16–47.

    Article  MathSciNet  MATH  Google Scholar 

  20. Guillemin, V. and Sternberg, S.: 1966, ‘Deformation Theory of Pseudogroup Structures’, Mem. Amer. Math. Soc. 64.

    Google Scholar 

  21. Kretschmann, E.: 1917, `Über den physikalischen Sinn der Relativitätstheorie’, Annalen der Physik 53 (16), 576–614.

    Google Scholar 

  22. Kobayashi, S. and Nomizu, K.: 1963, Foundations of Differential Geometry, Vol. 1, Interscience, New York.

    MATH  Google Scholar 

  23. Schmidt, H.-J.: 1979, Axiomatic Characterization of Physical Geometry,Vol. 111 of Lecture Notes in Physics,Springer-Verlag, Heidelberg. Edited by J. Ehlers et al.

    Google Scholar 

  24. Singer, I. M. and Sternberg, S.: 1965, ‘The Infinite Groups of Lie and Cartan’, Ann. Inst. Fourier. I. 15, 1–114.

    Article  MathSciNet  MATH  Google Scholar 

  25. Weyl, H.: 1921, `Zur Infinitesimalgeometrie: Einordnung der projektiven und konformen Auffassung’, Nachr. König(. Ges. Wiss. Göttingen, Math.-phys. Kl., pp. 99–112. Reprinted in [26].

    Google Scholar 

  26. Weyl, H.: 1968, Gesammelte Abhandlungen, Vols. 1–4, Springer Verlag, Berlin. Edited by K. Chandrasekharan.

    MATH  Google Scholar 

  27. Whiteley, W.: 1982, ‘Motions of Trusses and Bipartite Frameworks’, Struct. Topoi. 7, 61–68.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Coleman, R.A., Korté, H. (1995). A New Semantics for the Epistemology of Geometry II: Epistemological Completeness of Newton—Galilei and Einstein—Maxwell Theory. In: Majer, U., Schmidt, HJ. (eds) Reflections on Spacetime. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2872-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2872-0_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4612-3

  • Online ISBN: 978-94-017-2872-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics