Skip to main content

Part of the book series: Developments in Hydrobiology ((DIHY,volume 132))

Abstract

The aim of this project was to study the hydrodynamic consequences of substratum colonization by barnacles. Replicas of individual barnacles and barnacle colonies, and living colonies were studied in a 5 m seawater flume using tracer dyes, macro video-photography and image digitization and in a small flume fitted with differential pressure sensors. Using replicas, colonization densities were manipulated to determine the dynamics of complex barnacle populations. These techniques enabled the quantification of drag, boundary layers and their interrelationships with mean flow velocity and population density.

These data show that mean stream velocity affected the size and magnitude of the boundary layer and that at higher velocities the flow over the height at which the cirri were operating was decreased proportionally greater than at low mean stream velocities. The effect on flow velocity over the cirri with increased boundary layer at higher mean stream velocities was assessed and an optimum mean stream velocity for flow over cirri identified. Density of barnacles was shown to have an effect on the flow characteristics over the population, with flow changing from independent flow at low densities, through interactive flow to skimming flow at higher densities. Drag was also shown to be affected by barnacle density. The economic impact of barnacle fouling on the world maritime fleet is estimated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abelson, A. & Y. Loya, 1995. Cross-scale patterns of particulate food acquisition in marine benthic environments. Am. Nat. 145: 848–854.

    Article  Google Scholar 

  • Abelson, A., T. Miloh & Y. Loya, 1993. Flow patterns induced by substrata and body morphologies of benthic organisms, and their roles in determining availability of food particles. Limnol. Oceanogr. 38: 1116–1124.

    Article  Google Scholar 

  • Alexander, S. E. & J. Roughgarden, 1996. Larval transport and population dynamics of intertidal barnacles: a coupled benthic/oceanic model. Ecol. Monogr. 66: 259–275.

    Article  Google Scholar 

  • Anderson, D. T., 1981. Cirral activity and feeding in the barnacle Balanus perforatus Bruguiere (Balanidae), with comments on the evolution of feeding mechanisms in thoracican cirripedes. Phil. Trans. r. Soc., Lond. Ser. B 291: 411–449.

    Article  Google Scholar 

  • Barnes, H. & H. T. Powell, 1950. The development, general morphology and subsequent elimination of barnacle populations, Balanus crenatus and B. balanoides, after heavy initial settlement. J. anim. Ecol. 19: 175–179.

    Article  Google Scholar 

  • Bertness, M. D., S. D. Gaines & R. A. Wahle, 1996. Wind-driven settlement patterns in the acorn barnacle Semibalanus balanoides. Mar. Ecol. Prog. Ser. 137: 103–110.

    Article  Google Scholar 

  • Bowden, B. S. & N. J. Davison, 1974. Resistance increments due to hull roughness associated with form factor extrapolation methods. N. M. I. Ship, TM 3800.

    Google Scholar 

  • Carlton, J. S., 1994. Marine propellers and propulsion. Butterworths Heinemann, Oxford.

    Google Scholar 

  • Crisp, D. J., 1955. The behaviour of barnacle cyprids in relation to water movement over a surface. J. exp. Biol. 32: 569–590.

    Google Scholar 

  • Crisp, D. J. & E. Bourget, 1985. Growth in barnacles. Adv. mar. Biol. 22: 199–244.

    Article  Google Scholar 

  • Crisp, D. J. & A. J. Southward, 1961. Different types of cirral activity of barnacles. Phil. Trans. r. Soc., Lond. Ser. B 243: 271–308.

    Article  Google Scholar 

  • Denny, M. W., 1994. Extreme drag forces and the survival of wind- and water-swept organisms. J. exp. Biol. 194: 97–115.

    PubMed  Google Scholar 

  • Douglas, J. F., J. M. Gasiorek & J. A. Swaffield, 1995. Fluid Mechanics. Longman, London, 819 pp.

    Google Scholar 

  • Eckman, J. E., 1996. Closing the larval loop: linking larval ecology to the population dynamics of marine benthic invertebrates. J. exp. mar. Biol. Ecol. 200: 207–237.

    Article  Google Scholar 

  • Freeman, J. H., 1977. The marine fouling of fixed offshore installations. Department of Energy, London, ISSN 0309 – 8184.

    Google Scholar 

  • Gucinski, H., R. E. Baier, A. E. Meyer, M. S. Fomalik & R. W. King, 1984. Surface microlayer properties affecting drag phenomena in seawater. Sixth int. Conf. mar. Con. Foul. 585 – 604.

    Google Scholar 

  • Harderlie, E. C., 1984. A brief overview of the effects of macrofouling. In J. D. Costlôw & R. C. Tipper (ed.), Marine Biodeterioration: An Interdisciplinary Study. US Naval Research Institute, Annapolis: 163 – 166.

    Google Scholar 

  • Hills, J. M. & J. C. Thomason, 1996. A multi-scale analysis of settlement density and pattern dynamics of the barnacle Semibalanus balanoides. Mar. Ecol. Prog. Ser. 138: 103–115.

    Article  Google Scholar 

  • Hills, J. M. & J. C. Thomason, 1997. The effect of scales of surface roughness on the settlement of barnacle (Semibalanus balanoides) cyprids. Biofouling 12: 57 – 69.

    Google Scholar 

  • Hills, J. M., J. C. Thomason & J. Muhl, 1997. A high-precision method for the manufacture of complex three-dimensional surfaces. Biofouling (submitted).

    Google Scholar 

  • Hunt, M. J. & C. G. Alexander, 1991. Feeding mechanisms in the barnacle Tetraclita squamosa (Bruguiere). J. exp. mar. Biol. Ecol. 154: 1–28.

    Article  Google Scholar 

  • Jdrgensen, C. B., 1966. Biology of Suspension Feeding. Pergamon Press, Oxford.

    Google Scholar 

  • Kimura, H., 1985. Hydrodynamic resistance of pipes and nets fouled with the acorn barnacle. Bull. jap. Soc. sci. Fish. 51: 549–555.

    Google Scholar 

  • Leonard, A. B., J. R. Strickler & N. D. Holland, 1988. Effects of current speed on filtration during suspension feeding in Oligometra serripena ( Echinodermata: Crinoidea). Mar. Biol. 9: 111–125.

    Article  Google Scholar 

  • Lewis, C. A., 1981. Juvenile to adult shift in feeding strategies in the pedunculate barnacle Pollicipes polymerus (Sowerby) (Cirripedia: Lepadomorpha ). Crustaceana 41: 14–20.

    Article  Google Scholar 

  • Lewthwaite, J. C., A. F. Molland & K. W. Thomas, 1985. An investigation into the variation of ship skin frictional resistance with fouling. Trans. r. Inst. nay. Arch. 127: 269–284.

    Google Scholar 

  • Mans, S., J. C. Thomason, M. Cowling & T. Hodgekiess, 1995. A replica method for the study of marine biofilms. J. mar. biol. Ass. U.K. 75: 759–762.

    Article  Google Scholar 

  • Mullineaux, L. S. & C. A. Butman, 1991. Initial contact, exploration and attachment of barnacle (Balanus amphitrite) cyprids settling in flow. Mar. Biol. 110: 93–103.

    Article  Google Scholar 

  • Noda, T. & S. Nakao, 1996. Multi-scale spatial pattern of recruitment in the barnacles Semibalanus cariosus at fishing ports on the Kameda Peninsula, southern Hokkaido, Japan. Hydrobiologia 324: 125–130.

    Article  Google Scholar 

  • Okamura, B., 1985. The effects of ambient flow velocity, colony size, and upstream colonies on the feeding success of Bryozoa. J. exp. mar. Biol. Ecol. 83: 69–80.

    Google Scholar 

  • Patterson, M. R., 1984. Patterns of whole colony prey capture in the octocoral Alcyonium siderium. Biol. Bull. 167: 613–629.

    Article  Google Scholar 

  • Pidgeon, J. D., 1993. Critical review of current and future marine antifouling coatings. Lloyd’s register of shipping engineering services, London, 93/TIPEE/4787.

    Google Scholar 

  • Pullen, J. & M. LaBarbera, 1991. Modes of feeding in aggregations of barnacles and the shape of aggregations. Biol. Bull. 181: 442–452.

    Article  Google Scholar 

  • Rittschof, D., E. S. Branscomb & J. D. Costlow, 1984. Settlement and behaviour in relation to flow and surface in larval barnacles, Balanus amphitrite Darwin. J. exp. mar. Biol. Ecol. 82: 131–146.

    Article  Google Scholar 

  • Rittschof, D., A. S. Clare, D. J. Gerhart, S. A. Mary & J. Bonaventura, 1992. Barnacle in vitro assays for biologically active substances: toxicity and settlement inhibition assays using mass cultured Balanus amphitrite amphitrite Darwin. Biofouling 6: 115 – 122.

    Google Scholar 

  • Sebens, K. P., 1987. Coelenterata. In F. J. Vernberg & T. J. Pandian (ed.), Animal Energetics. Vol. 1. Academic Press, New York: 55 – 120.

    Google Scholar 

  • Sebens, K. P., 1997a. Adaptive responses to water flow: morphology, energetics, and distribution of reef corals. Proc. 8th int. Coral Reef Symp. (in press).

    Google Scholar 

  • Sebens, K. P., 1997b. Effects of water flow and branch spacing on particle capture by the reef coral Madracis mirabilis (Duchassaing and Michelloti). J. exp. mar. Biol. Ecol. 211: 1–28.

    Article  Google Scholar 

  • Shanks, A. L., 1986. Tidal periodicity in the daily settlement of intertidal barnacle larvae and an hypothesized mechanism for the cross-shelf transport of cyprids. Biol. Bull. 170: 429–440.

    Article  Google Scholar 

  • Snelgrove, P. V. R., 1994. Hydrodynamic enhancement of invertebrate larval settlement in microdepositional environments: colonizing tray experiments in a muddy habitat. J. exp. mar. Biol. Ecol. 176: 149–166.

    Google Scholar 

  • Southward, A. J., 1955. Feeding of barnacles. Nature 175: 1124 – 1125.

    Google Scholar 

  • Trager, G., Y. Achituv & A. Genin, 1994. Effects of prey escape ability, flow speed, and predator feeding mode on zooplankton capture by barnacles. Mar. Biol. 120: 251–259.

    Google Scholar 

  • Trager, G. C., 1988. Can barnacles count to 10 — suspension feeding in variable flow and the role of learning. Am. Zool. 28: A 155—A 155.

    Google Scholar 

  • Trager, G. C., D. Coughlin, A. Genin, Y. Achituv & A. Gangopadhyay, 1992. Foraging to the rhythm of ocean waves — porcelain crabs and barnacles synchronize feeding motions with flow oscillations. J. exp. mar. Biol. Ecol. 164: 73–86.

    Article  Google Scholar 

  • Trager, G. C., J. S. Hwang & J. R. Strickler, 1990. Barnacle suspension-feeding in variable flow. Mar. Biol. 105: 117–127.

    Google Scholar 

  • Vassilicos, J. C., 1995. Turbulence and intermittency. Nature 374: 408 – 409.

    Article  CAS  Google Scholar 

  • Vogel, S., 1994. Life in moving fluids. The physical biology of flow, Princeton University Press, Princeton, NJ, 467 pp.

    Google Scholar 

  • Walters, L. J. & D. S. Wethey, 1991. Settlement, refuges, and adult body form in colonial marine-invertebrates — a field experiment. Biol. Bull. 180: 112–118.

    Google Scholar 

  • Walton-Smith, F. G., 1946. Effect of water currents upon attachment and growth of barnacles. Biol. Bull. 90: 51–70.

    Google Scholar 

  • Wethey, D. S., M. W. Luckenbach & C. A. Kelly, 1988. Larval settlement in barnacles: influence of water flow. In M.-F. Thompson, R. Sarojini & R. Nagabhushanam (ed.), Marine Biodeterioration: Advanced Techniques Applicable to the Indian Ocean. Oxford & IBH Publishing, New Dehli: 499 – 511.

    Google Scholar 

  • Wong, Y. M. & P. G. Moore, 1996. Observations on the activity and life history of the scavenging isopod, Natatolana borelealis Lilljeborg (Isopoda: Cirolanidae) from Loch Fyne, Scotland. Estuar. coast. Shelf Sci. 42: 247–262.

    Google Scholar 

  • Yager, P. L., A. R. M. Nowell & R. A. Jumars, 1993. Enhanced deposition to pits: a local food source for benthos. J. mar. Res. 51: 209–236.

    Google Scholar 

  • Yen, J. & J. R. Strickler, 1996. Advertisement and concealment in the plankton — what makes a copepod hydrodynamically conspicuous? Invert. Biol. 115: 191 – 205.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Susanne Baden Leif Phil Rutger Rosenberg Jarl-Ove Strömberg Ib Svane Peter Tiselius

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Thomason, J.C., Hills, J.M., Clare, A.S., Neville, A., Richardson, M. (1998). Hydrodynamic consequences of barnacle colonization. In: Baden, S., Phil, L., Rosenberg, R., Strömberg, JO., Svane, I., Tiselius, P. (eds) Recruitment, Colonization and Physical-Chemical Forcing in Marine Biological Systems. Developments in Hydrobiology, vol 132. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2864-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2864-5_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5109-7

  • Online ISBN: 978-94-017-2864-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics