Skip to main content

Variation in tissue element concentrations in Quercus ilex L. over a range of different soils

  • Chapter
Quercus ilex L. ecosystems: function, dynamics and management

Part of the book series: Advances in vegetation science ((AIVS,volume 13))

  • 143 Accesses

Abstract

In order to study the variability in nutrient concentrations in four tissues of Q. ilex in relation to soil properties, we selected fifteen stands in both Quercus ilex forests and Q. ilex-Pinus halepensis mixed forests. These stands had developed on soils derived from eight different parent materials. Three soil groups were differentiated according to their chemical properties: calcareous soils, siliceous soils, and volcanic soils. Across sites, nutrient concentrations were generally less variable in current-year tissues than in older tissues. Nitrogen and potassium showed the lowest variability among sites, their concentrations in current-year leaves ranging from 1.17% to 1.39% for N and from 0.53% to 0.68% for K. There were few statistically significant correlations between tissue element concentrations, the most frequent being the antagonistic relationship between calcium and magnesium. Nitrogen concentration in current-year leaves was negatively correlated with soil chemical fertility (nitrogen, phosphorus and potassium). This may reflect a nutritional imbalance between nitrogen and other nutrients, some of which may be more limiting than nitrogen to Q. ilex growth in Catalonia forests. Negative correlations were also found between plant magnesium and soil calcium, and positive correlations between plant calcium and soil calcium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alban, D. H. 1974. Red pine site index in Minnesota as re- lated to soil and foliar nutrients. For. Sci. 20: 261–269.

    Google Scholar 

  • Beadle, N. C. W. 1954. Soil phosphate and the delimination of plant communities in eastern Australia. Ecology 35: 370–375.

    Article  CAS  Google Scholar 

  • Binkley, D. & Hart, S. C. 1989. The components of nitrogen availability assessments in forest soils. Adv. Soil Sei. 10; 67–113.

    Google Scholar 

  • Bradshaw, A. D. 1965. Evolutionary significance of phenotypic plasticity in plants. Adv. Genet. 13: 115–155.

    Google Scholar 

  • Bradshaw, A. D. 1984. Ecological significance of genetic variation between populations. In: Dirzo, R. & Saruklan, J. (eds.), Perspectives on Plant Population Ecology, pp. 213–241. Sinauer Associates Inc. Publishers, Massachusetts.

    Google Scholar 

  • Brun, B. & L., Conrad, M. & Gamisans, J. 1975. La Nature en France: Corse. Horizons de France. Strasbourg, France.

    Google Scholar 

  • Bunderson, E. D. & Weber, D. J. 1986. Foliar nutrient composition of Juniperus osteosperma and environmental interactions. Forest Sci. 32: 149–156

    Google Scholar 

  • Chapin, F. S. III. 1980. The mineral nutrition of wild plants. Ann. Rev. Ecol. Syst. 11: 233–260.

    Google Scholar 

  • Clark, R. B. 1983. Plant genotype differences in the uptake, translocation, accumulations, and use of mineral elements required for plant growth. Plant Soil 72: 175–196.

    Article  CAS  Google Scholar 

  • Clemente, A. 1983. Componentes especifico y estacional en la variacién de contenidos en elementos qulmicos de las especies y formas biolôgicas del encinar mediterrâneo. Tesis de licenciatura. Universidad de Alicante.

    Google Scholar 

  • van den Driessche, R. 1974. Prediction of mineral nutrient status of trees by foliar analysis. Bot. Rev. 40: 347–394.

    Google Scholar 

  • Eriksen, A. B. & Nordal, I. 1989. Ecotypic differentiation in relation to soil nitrogen in northern Scandinavian Cochlearia officinalis. Hol. Ecol. 12: 31–38.

    Google Scholar 

  • Ferrés, LI. 1984. Biomassa, producciOn y mineralomasas del encinar montano de La Castanya (Montseny). Tesis Doctoral. Universitat Autbnoma de Barcelona.

    Google Scholar 

  • Garten, C. T., Jr. 1976. Correlations between concentrations of elements in plants. Nature 261: 686–688.

    Article  CAS  Google Scholar 

  • Gauch, H. G. & Stone, E. L. 1979. Vegetation and soil pattern in a mesophytic forest at Ithaca, New York. Am. Midl. Nat. 102: 332–345.

    Google Scholar 

  • Gerloff, G. C., Moore, D. G. & Curtis, J. T. 1966. Selective absorption of mineral elements by native plants of Wisconsin. Plant Soil 3: 393–405.

    Article  Google Scholar 

  • Gottlieb, L. D. 1984. Genetic and morphological evolution in plants. Am. Nat. 123: 681–709.

    Google Scholar 

  • Hansen, E. A., McLaughlin, R. A. & Pope, P. E. 1988. Biomass and nitrogen dynamics of hybrid poplar on two different soils: implications for fertilization strategy. Can. J. For. Res. 18: 223–230.

    Google Scholar 

  • Harper, J. L. 1977. Population Biology of Plants. Academic Press. London.

    Google Scholar 

  • Imper, D. K. & Zobel, D. B. 1983. Soils and foliar nutrient analysis in Chamaecyparis lawsoniana and Thuja plicata in southwestern Oregon. Can. J. For. Res. 13: 1219–1227.

    Google Scholar 

  • Jain, S. K. & Bradshaw, A. D. 1966. Evolutionary divergence among adjacent plant populations. I. The evidence and its theoretical analysis. Heredity 21: 407–441.

    Google Scholar 

  • Johnson, J. E., Haag, C. L., Bockheim, J. G. & Erdmann, G. G. 1987. Soil-site relationships and soil characteristics associated with even-aged red maple (Acer rubrum) stands in Wisconsin and Michigan. For. Ecol. Manage. 21: 75–89.

    Google Scholar 

  • Karlsson, P. S. & Nordell, K. O. 1988. Intraspecific variation in nitrogen status and photosynthetic capacity within mountain birch populations. Hol. Ecol. 11: 293–297.

    Google Scholar 

  • Kruger, F. J., Mitchell, D. T. & Jarvis, J. U. M. 1983. Mediterranean-Type Ecosystems. The Role of Nutrients. Springer, Berlin.

    Google Scholar 

  • Kuiper, D. & Kuiper, P. J. C. 1988. Phenotypic plasticity in a physiological perspective. Oecol. Plant. 9: 43–59.

    Google Scholar 

  • Lamb, D. 1977. Relationships between growth and foliar nutrient concentrations in Eucalyptus deglupta. Plant Soil 47: 495–508.

    Article  CAS  Google Scholar 

  • Lee, J. A., Harmer, R. & Ignaciuk, R. 1983. Nitrogen as a limiting factor in plant communities. IN: Lee, J. A., Mcneili, S. & Rorison, I. H. (eds.). Oxford, London.

    Google Scholar 

  • Leonardi, S. & Rapp, M. 1980. Biomass et composition minerale de Quercus ilex L. du Monte Minardo (Etna). Arch. Bot. Biog. Ital. 56: 70–84.

    Google Scholar 

  • Lossaint, P. & Rapp, M. 1978. La forêt méditerranéenne de chênes verts. In: Lamotte, M. & Bourliere, F. (eds.), Problèmes d’Ecologie. Ecosystèmes terrestres, pp. 129–185. Masson, Paris.

    Google Scholar 

  • Madgwick, H. A. I., Beets, P. N., Sandberg, A. M. & Jackson, D. S. 1983. Nitrogen concentration in foliage of Pinus radiata as affected by nitrogen nutrition, thinning, needle age, and position in crown. New Zealand J. For. Sci. 13: 197–204.

    Google Scholar 

  • MAP. 1981. Métodos oficiales de analisis de suelos y aguas. Ministerio de Agricultura y Pesca. Madrid.

    Google Scholar 

  • Margaris, N. S., Adamandiadou, S., Siafaca, L. & Diamantopoulos, J. 1984. Nitrogen and phosphorus content in plant species of Mediterranean ecosystems in Greece. Vegetatio 55: 29–35.

    Article  Google Scholar 

  • Marion, G. M., Hastings, S. J., Oberbauer, S. F. & Oechel, W. C. 1989. Soil-plant element relationships in a tundra ecosystem. Hol. Ecol. 12: 296–303.

    Google Scholar 

  • Marschner, H. 1986. Mineral Nutrition of Higher Plants. Harcourt Brace Javanovich, Publishers. London.

    Google Scholar 

  • Mayor, X. 1990. El paper dels nutrients com a factors limitants de la producci5 primària de l’alzinar de la conca del Torrent de La Mina (Montseny). Master. Universitat Autdnoma de Barcelona.

    Google Scholar 

  • McColl, J. G. 1969. Soil-plant relationships in a Eucalyptus forest on the south coast of New South Wales. Ecology 50: 354–362.

    Article  CAS  Google Scholar 

  • Ohlson, M. 1988. Variation in tissue element concentration in mire plants over a range of sites. Hol. Ecol. 11: 267–279.

    Google Scholar 

  • Powers, R. F. 1984. Estimating soil nitrogen availability through soil and foliar analysis. In. Stone, E. L. (ed.), Forest Soils and treatment Impacts. pp. 353–379. Knoxville, Tennessee.

    Google Scholar 

  • SAS Institute. 1988. SAS (Statistical Analysis System) User’s Guide. N. C. Cary, North Carolina.

    Google Scholar 

  • Schlichting, C. D. 1986. The evolution of phenotype plasticity in plants. Ann. Rev. Ecol. Syst. 17: 667–693.

    Google Scholar 

  • Schulze, E.-D. & Chapin III, F. S. 1987. Plant specialization to environments of different resources availability. In: Schulze E.-D. & Zwolfer H. (eds.), Potentials and limitations of ecosystem analysis. pp. 120–148. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Specht, R. L. 1963. Dark Island health (ninety-mile plain, south Australian). VII. The effect of fertilizers on composition and growth, 1950–60. Aust. J. Bot. 11: 67–94.

    Google Scholar 

  • Specht, R. L. (ed.). 1988. Mediterranean-Type Ecosystems. A Data Source Book. Kluwer Academic Publishers. Dordrecht.

    Google Scholar 

  • Tamm, C. O. 1975. Plant nutrient as limiting factors in ecosystem dynamics. In: Productivity of world ecosystems. Natural Academy of Sciences. Washington.

    Google Scholar 

  • Tilton, D. L. 1978. Comparative growth and foliar element concentrations of Laris lancina over a range of wetland types in Minnesota. J. Ecol. 66: 499–512.

    Article  CAS  Google Scholar 

  • Turner, J. & Lambert, M. J. 1986. Nutrition and nutritional relationships of Pinus radiata. Ann. Rev. Ecol. Syst. 17: 325–350.

    Google Scholar 

  • Vermeer, J. G. & Verhoeven, J. T. A. 1987. Species composition and biomass production of mesotrophic fens in relation to the nutrient status of the organic soil. Oecol. Plant. 8: 321–330.

    Google Scholar 

  • Wells, C. G. & Metz, L. J. 1963. Variation in nutrient content of loblolly pine needles with season, age, soil, and position on the crown. Soil Sci. Soc. Ann. Proc. 27: 90–93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

F. Romane J. Terradas

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Canadell, J., Vilà, M. (1992). Variation in tissue element concentrations in Quercus ilex L. over a range of different soils. In: Romane, F., Terradas, J. (eds) Quercus ilex L. ecosystems: function, dynamics and management. Advances in vegetation science, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2836-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2836-2_29

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4162-3

  • Online ISBN: 978-94-017-2836-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics