Skip to main content

Lattice Structure of Intermediate Subfactors

  • Chapter
  • 264 Accesses

Part of the Mathematical Physics Studies book series (MPST,volume 16)

Abstract

Any irreducible subfactor of finite index has only finitely many intermediate subfactors. Any finte lattice with at most five elements can be realized as an intermediate subfactor lattice.

Key words

  • subfactor
  • intermediate subfactor
  • lattice
  • modular identity

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-017-2823-2_26
  • Chapter length: 3 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-94-017-2823-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)

References

  1. H. Araki, A lattice of von Neumann algebras associated with the quantum theory of a free Bose field, J. Math. Phys. 4 (1963) 1343–1362.

    MathSciNet  ADS  MATH  CrossRef  Google Scholar 

  2. D. Bisch, A note on intermediate subfactors, preprint, 1992.

    Google Scholar 

  3. E. Christensen, Subalgebras of a finite algebra, Math. Ann. 243 (1979), 17–29.

    MathSciNet  MATH  CrossRef  Google Scholar 

  4. S. Doplicher, R. Haag and J.E. Roberts, Fields, observables and gauge transformations I, Comm. Math. Phys. 13 (1969), 1–23.

    MathSciNet  ADS  MATH  CrossRef  Google Scholar 

  5. R. Haag and D. Kastler, An algebraic approach to quantum field theory, Comm. Math. Plays. 5 (1964), 848–864.

    MathSciNet  ADS  MATH  CrossRef  Google Scholar 

  6. V. Jones, Index for subfactors, Invent. Math. 72 (1983), 1–15.

    MATH  Google Scholar 

  7. F.J. Murray and J.von Neumann, On rings of operators,Ann. Math. 37(1936), 116229.

    Google Scholar 

  8. M. Nakamura and Z. Takeda, A Golois theory for finite factors, Proc. Japan Acad. 36 (1960), 258–260.

    MATH  CrossRef  Google Scholar 

  9. J. von NeumannContinuous Geometry Princeton, 1960.

    Google Scholar 

  10. A. Ocneanu, Quantized group, string algebras and Galois theory for algebras, in “Operator Algebras and Applications, vol.2” London Math. Soc. Lect. Note Series, Vol. 136, (1988), 119–172.

    MathSciNet  Google Scholar 

  11. S. Popa, Sur la classification des sousfacteurs d’indice fini du facteur hyperfini, C. R. Acad. Sci. Paris, 311 (1990), 95–100.

    MATH  Google Scholar 

  12. C. Skau, Finite subalgebras of a von Neumann algebra, J. Funct. Anal. 25 (1977), 211–235.

    MathSciNet  MATH  CrossRef  Google Scholar 

  13. Y. Watatani, Lattices of intermediate subfactors, preprint.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Watatani, Y. (1993). Lattice Structure of Intermediate Subfactors. In: Araki, H., Ito, K.R., Kishimoto, A., Ojima, I. (eds) Quantum and Non-Commutative Analysis. Mathematical Physics Studies, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2823-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2823-2_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4334-4

  • Online ISBN: 978-94-017-2823-2

  • eBook Packages: Springer Book Archive