Skip to main content

Tolerance of Heavy Metals in Vascular Plants: Arsenic Hyperaccumulation by Chinese Brake Fern (Pteris Vittata L.)

  • Chapter
Pteridology in the New Millennium

Abstract

Arsenic, a carcinogenic metalloid, occurs naturally in the earth’s crust. However, a host of anthropogenic activities during the 20th century, contributed to dramatic increases in arsenic levels in the biosphere. Recently, one particular pteridophyte, a fern, commonly known as Chinese Brake fern (Pteris vittata L.), has generated a global interest due to the discovery of its unique property of hyperaccumulating arsenic in the fronds from both contaminated and uncontaminated sites (Ma et al., 2001a). The emergence of this arsenic-loving fern offers a great promise to phytoremediation, a plant-driven environmentally benign clean up process wherein the roots take up colossal amounts of a toxic metal from soils and rapidly sequester into their above-ground portions. Plants capable of accomplishing such features use termed as hyperaccumulators. Chinese Brake fern qualifies as an arsenic hyperaccumulator and thus has potential application in phytoremediation of arsenic contaminated sites. In order to model a successful phytoremediation strategy for arsenic contaminated sites, one must first gain a comprehensive knowledge of the sequential biological processes involved in arsenic uptake, translocation, and hyperaccumulation in the fronds. In this chapter, we present a conceptual framework for the phytoremediation of arsenic-contaminated sites by describing plant morphology of the Chinese Brake fern and its geographical distribution, ecophysiology and mechanism of arsenic hyperaccumulation in the light of accumulated knowledge on heavy metal tolerance in higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Antonovics J, A. D. Bradshaw, and R. G. Turner. 1971. Heavy metal tolerance in plants. Adv. Ecol. Res. 7: 2–72.

    Google Scholar 

  • Asher, C. J. and P. F. Reay. 1979. Arsenic uptake by barley seedlings. Austr. J. Plant Physiol. 6: 459–466.

    Google Scholar 

  • Baker, A. J. M. and J. Proctor. 1990. The influence of cadmium, copper, lead, and zinc on the distribution and evolution of metallophytes in the British Isles. Plant Syst. Evol. 173: 91–108.

    Google Scholar 

  • Baker, A. J. M. and R. R. Brooks. 1989. Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution, ecology, and phytochemistry. Biorecovery 1: 81–126. BAKER, A. J. M., R. BROOKS, and R. REEVES. 1988. Growing for gold…and copper…and zinc. New Scient. 117: 44–48.

    Google Scholar 

  • Baker, A. J. M., R. D. Reeves, and S. P. Mcgrath. 1991. In situ decontamination of heavy metal polluted soils using crops of metal-accumulating plants-a feasibility study. Pp. 539–544. In: Hinchee, R. E. and R. F. Olfenbuttel (eds.) In situ Bioreclamation. Stoneham, MA: Butterworth-Heinemann.

    Google Scholar 

  • Banks, J. A. 1999. Gametophyte development in ferns. Annu. Rev. Plant Physiol. Plant Molec. Biol. 50: 163–186.

    Google Scholar 

  • Beevers, R. E. and D. W. Burns. 1980. Phosphate uptake, storage, and utilization by fungi. Adv. Bot. Res. 8: 127–219.

    Google Scholar 

  • Benson, N. R. 1953. Effect of season, phosphate and acidity on plant growth in arsenic toxic soils. Soil Sci. 76: 215–224.

    Article  CAS  Google Scholar 

  • Bieleski, R. L. and I. B. Ferguson. 1983. Physiology and metabolism of phosphate and its compounds. Pp. 422–449. In: Lauchli, A. and R. L. Bieleski (eds.) Encyclopedia of Plant Physiology. Vol. 15A, Springer-Verlag, Berlin.

    Google Scholar 

  • Bijlsma, K. and V. Loeschcke. 1997. Introductory remarks: Environmental Stress, Adaptation and Evolution. Pp. X III. In: Bijlsma, R. and V. Loeschcke (eds.) Environmental Stress, Adaptation and Evolution. Birkhauser Verlag: Bostn.

    Google Scholar 

  • Bondada, B. R., C. Tu, and L. Q. Ma. 2002. Surface micromorphology of brake fern. Ann. Bot. (In Review).

    Google Scholar 

  • Boyd, R. S. and S. N. Martens. 1992. The raison d’stre for metal hyperaccumulation by plants. Pp. 279–289. In: Baker, A. J. M., J. Procter, and R. D. Reeves (eds.) The vegetation of ultramaifc (serpentine) soils. Andover, UK: Intercept.

    Google Scholar 

  • Boyd, R. S. and S. N. Martens. 1998. The significance of metal hyperaccumulation for biotic interactions. Chemoecology. 8: 1–7.

    Article  CAS  Google Scholar 

  • Boyd, R. S., M. A. Wall, and J. E. Watkins. 2000. Correspondence between Ni tolerance and hyperaccumulation in Streptanthus ( Brassicaceae ). Madrono 47: 97–105.

    Google Scholar 

  • Bradschaw, A. D. 1952. Populations of Agrostis tenuis resistant to lead and zinc poisoning. Nature 169: 1098.

    Article  Google Scholar 

  • Bradshaw, A. D. 1984. Adaptations of plants to soils containing toxic metals-a test for conceit. Pp. 4–19. In: Evered, D. and G. M. Collins (eds.) Origins and development of adaptation. Ciba Foundation Symposium, London: Pitman.

    Google Scholar 

  • Brooks, R. R., J. Lee, R. D. Reeves, and T. Jaffre. 1977. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J. Geochem. Expl. 7: 49–57.

    Google Scholar 

  • Brooks, R.R. 1998. Phytochemistry of hyperaccumulators. Pp. 15–54. In: Brooks, R. R. (ed). Plants that Hyperaccumulate Heavy Metals–Their Role in Phytoremediation, Microbiology, Archeology, Mineral Exploration and Phytomining. CAB International, New York.

    Google Scholar 

  • Carbonell-Barrachina, A., F. Burlo-Carbonell, and J. Beneyto. 1995. Arsenic uptake, distribution, and accumulation in tomato plants: effects of arsenite on plant growth and yield. J. Plant Nutr. 18: 1237–1250.

    Article  Google Scholar 

  • Clemens, S., E. J. Kim, D. Neumann, and J. I. Schroeder. 1999. Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J. 18: 3325–3333.

    Article  PubMed  CAS  Google Scholar 

  • Cobb, G. P. K., M. Sands, M. Waters, B. G. Wixson, and E. Dorward-King. 2000. Accumulation of heavy vegetables grown in mine wastes. Environ. Toxicol. Chem 19: 600–607.

    Google Scholar 

  • Cobbett,C. and P. Goldsbrough. 2002. Phytochelatins and metallothioneins. Roles in heavy metal detoxification and homeostasis. Annu. Rev. Plant Biology 53: 159–182.

    Google Scholar 

  • Cullen, W. R. and K. J. Reimer. 1989. Arsenic speciation in the environment. Chemical Rev. 89: 713–764.

    Article  CAS  Google Scholar 

  • Cunningham, S. D. and W. R. Bert. 1993. Remediation of contaminated soils with green plants: an overview. In Vitro Cell. Dev. Bio. 207: 212.

    Google Scholar 

  • Deuel, L. E. and A. R. Swoboda. 1972. Arsenic toxicity to cotton and soybeans. J. Environ. Qual. 1: 317–320.

    Google Scholar 

  • De Koe, T. 1994. Arsenic resistance in submediterranean Agrotis species. Ph.D. thesis, Vrije Universiteit Amsterdam, The Netherlands.

    Google Scholar 

  • Dragun, J. 1988. The soil chemistry of Hazardous materials. Hazardous Materials Control Research Institute, Silver Spring, Maryland.

    Google Scholar 

  • Duncan, B.D. and G. Isaac. 1994. Ferns and Allied plants of Victoria, Tasmania, and South Australia. Melobourne University Press, Carlton, Victoria.

    Google Scholar 

  • Ernst, W. H. O., H. Schat, and J. A. C. Verkleji. 1990. Evolutionary biology of metal resistance in silene vulgaris. Evol. Trends Plants 4: 45–51.

    Google Scholar 

  • Ernst, W. H. O. 1993. Geobotanical and biogeochemical propsecting for heavy metal deposits in Europe and Africa. Pp. 107–126. In: Markert, B. (ed.) Plants as Biomonitors. Weinheim: New York. FELDMANN, J. 2001. An appetite for arsenic. Chemistry in Britain. January: 31–32.

    Google Scholar 

  • Glass, D. J. 1999. U. S. and International Markets for Phytoremediation, 1999–2000. D. Glass Assocaites, Inc., Needham, MA, USA.

    Google Scholar 

  • Grill, E., E. L. Winnacker, and M. H. Zenk. 1985. Phytochelatins: the principal heavy metal complexing peptides of higher plants. Science 230: 674–676.

    Article  PubMed  CAS  Google Scholar 

  • Grill, E., S. Loffler, E. L. Winnacker, and M. H. Zenk. 1987. Phytochelatins, a class of heavy metal binding peptides from plants are functionally analogous to metallothioneins. Proc. Nat. Acad. Sci., USA. 84: 439–443.

    Google Scholar 

  • Grill, E., S. Loffler, E. L. Winnacker, and M. H. Zenk. 1989. Phytochelatins, the heavy metal binding peptides of plants are synthesized from glutathione by a specific γ-glutamyl-cysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc. Nat. Acad. Sci., USA 86: 6838–6842.

    Google Scholar 

  • Gupta, M. and S. Devi. 1994. Chronic toxicity of cadmium in Pteris vittata, a roadside fern. Ecotoxicology 3: 235–247.

    Article  CAS  Google Scholar 

  • Gupta, M. and S. Devi. 1995. Uptake and toxicity of cadmium in aquatic ferns. J. Environ. Biol. 16: 131–136.

    CAS  Google Scholar 

  • Ha, S. B., A. P. Smith, R. Howden, W. M. Dietrich, S. Bugg, M. J. O’connell, P. B. Goldsbrough, and C. S. Cobbett. 1999. Phytochelating synthase genes from Arabidopsis and yeast Schizosacharomyces pombe. Plant Cell 11: 1153–1161.

    PubMed  CAS  Google Scholar 

  • Hall, J. B. 1970. Pteris vittata Linn. a gold mine fern in Ghana. Niger Fd. 35: 1–9.

    Google Scholar 

  • Hartley-Whitaker J., G. Ainsworth, R. Vooijs, W. Ten Bookum, H. Schat, and A. A. Mehrag. 2001. Phytochelatins are involved in differential arsenate tolerance in Holcus lantus. Plant Physiol. 126: 299–306.

    Article  PubMed  CAS  Google Scholar 

  • Jaffre, T., R. R. Brooks, J. Lee, and R. D. Reeves. 1976. Sebertia acuminata: A hyperaccumulator of nickel from New Caledonia. Science 193: 579–580.

    Google Scholar 

  • Jones, J. S. and M. S. Hatch. 1945. Spary residues and crop assimilation of arsenic and lead. Soil Sci. 60: 277–288.

    Article  CAS  Google Scholar 

  • Jules, E. S. and A. J. Shaw. 1994. Adaptation to metal contaminated soils in populations of the moss Ceratodon purpureus: vegetative growth and reproductive expression. Am. J. Bot. 81: 791–797.

    Google Scholar 

  • Kenrick, P. and P. Crane. 1997. The origin and early evolution of land plants. Nature 389: 33–39. Kneer, R. and M. H. Zenk. 1992. Phytochelatins protect plant enzymes from heavy metal poisoning. Phytochem. 31: 2663–2667.

    Google Scholar 

  • Kramer, U. 2000. Cadmium for all meals - plants with an unusual appetite. New Phytol. 145: 1–5. KRUCKEBERG, A. R. 1964. Ferns associated with ultramafic rocks in the pacific northwest. Amer. Fern J. 54: 113–126.

    Google Scholar 

  • Lasat, M. M., A. J. M. Baker, and L. V. Kochian. 1996. Physiological characterization of root ZN2+ absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi. Plant Physiol. 112: 1715–1722.

    PubMed  CAS  Google Scholar 

  • Linhart, Y. B. and M. C. Grant. 1996. Evolutionary significance of local genetic differentiation in plants. Annu. Rev. Ecol. Syst. 27: 237–277.

    Google Scholar 

  • Lombi, E., F. J. Zhao, S. J. Dunham, and S. P. Mcgrath. 2000. Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol. 145: 11–20.

    Article  CAS  Google Scholar 

  • Ma, L. Q., K.M. Komar, C. TU, W. Zhang, and Y. Cai. 2001a. A fern that hyperaccumulates arsenic. Nature 409: 579.

    Article  PubMed  CAS  Google Scholar 

  • Ma, L. Q., K.M. KOMAR, C. TU, W. ZHANG, and Y. CAI. 2001b. A fern that hyperaccumulates arsenic-addendum. Nature 411: 438.

    Article  CAS  Google Scholar 

  • Machlis, L. 1941. Accumulation of arsenic in shoots of sudangrass and bushbean. Plant Physiol. 16: 521–543.

    Article  PubMed  CAS  Google Scholar 

  • Macnair, M. R. and Q. Cumbes. 1987. Evidence that arsenic tolerance in Holcus lantus is caused by an altered phosphate uptake system. New Phytol. 107: 387–394.

    Article  CAS  Google Scholar 

  • Macnair, M. R., Q. J. Cumbes, and A. A. Mehrag. 1992. The genetics of arsenic tolerance in Yorkshire Fog, Holcus lantus L. Heredity 69: 325–335.

    Article  CAS  Google Scholar 

  • Macnair, M. R. and A. J. M. Baker. 1994. Metal tolerant plants: An evolutionary perspective. Pp. 68–83. In: Farago, M. E. (ed.) Plants and the Chemical Elements. Weinheim: New York.

    Google Scholar 

  • Macnair, M. R. 1997. The evolution of plants in metal -contaminated environments. Pp. 3–24. In: Bijlsma, R. and V. Loeschcke (eds.) Environmental Stress, Adaptation and Evolution. Birkhauser Verlag: Bostn.

    Google Scholar 

  • Macnair, M. R., G. H. Tilstone, and S. E. Smith. 2000. The genetics of metal tolerance and accumulation in higher plants. Pp. 235–248. In: Terry, N. and G. Banueoles (eds.) Phytoremediation of contaminated soil and water. Lewis Publishers: London, UK.

    Google Scholar 

  • Marin, A. R., S. R. Pezashki, P. H. Masschelen, and H. S. Choi. 1993. Effect of dimethylarsenic acid on growth, tissue arsenic, and photosynthesis of rice plants. J. Plant Nutr. 16: 865–880.

    Article  CAS  Google Scholar 

  • Maitani, T., H. Kubota, K. Sato, T. Yamada. 1996. The composition of metals bound to class III metallothionein (Phytochelatin and its desglycyl peptide) induced by various metals in root cultures of Rubia tinctorum. Plant Physiol. 110: 1145–1150.

    PubMed  CAS  Google Scholar 

  • Manning, B. A. and D. L. Suarez. 2000. Modelling arsenic (III) adsorption and heterogenous oxidation kinetics in soils. Soil Sci. Soc. Amer. J. 64: 128–137.

    Google Scholar 

  • Matera, V. and I. L. Hecho. 2001. Arsenic behavior in contaminated soils: Mobility and speciation. Pp. 207–235. In: Selim, H. M. and D. L. Sparks (eds.) Heavy Metals Release in Soils. CRC Press LLC.

    Google Scholar 

  • Matscullat, J. 2000. Arsenic in the geosphere-a review. Sci. Total Env. 249: 297–312.

    Google Scholar 

  • Mattusch, J, R. Wennrich, A.-Ch. Schmidt, and W. Reisser. 2000. Determination of arsenic species in water, soils and plants. Fresenius J. Anal. Chem. 366: 200–203.

    Google Scholar 

  • Mehrag, A. A. and M. R. Macnair. 1990. An altered phosphate uptake system in arsenate-tolerant Holcus lantus L. New Phytol. 116: 29–35.

    Article  Google Scholar 

  • Mehrag, A. A. and M. R. Bacnair. 1992. Suppression of the high affinity phosphate uptake system: A mechanism for arsenate tolerance in Holcus lantus. J. Exp. Bot. 43: 519–524.

    Google Scholar 

  • Mehrag, A. A., Q. J. Cumbes, and M. R. Bacnair. 1993. Pre-adaptation of Yorkshire Fog, Holcus lantus L. ( Poaceae) to arsenate tolerance. Evolution 47: 313–316.

    Google Scholar 

  • Mehrag, A. A. 1994. Integrated tolerance mechanisms: constitutive and adaptive plant responses to elevated metal concentrations in the environment. Plant, Cell Env. 17: 989–993.

    Google Scholar 

  • Monni, S., H. Bucking, and I. Kottke. 2002. Ultrastructural element localization by EDXS in Empertum nigrum. Micron 33: 339–351.

    Article  PubMed  CAS  Google Scholar 

  • Nair, N. C. and A. Das. 1978. Studies on the venation pattern in ferns. III. Anastomoses and other features in Pteris vittata L. Acta Bot. Indica 6 (Suppl): 54–59.

    Google Scholar 

  • Nelson, G. 2000. The ferns of Florida: a reference and field guide. Pineapple Press, Inc., Sarasota, FL. NICHOLS, P. B., J. D. COUCH, and S. H. AL-HAMDANI. 2000. Selected physiological responses of Salvinia minima to different chromium concentrations. Aquatic Bot. 68: 313–319.

    Google Scholar 

  • Nieboer, E. and D. H. S. Richardson. 1980. The replacement of the non-descriptive term “heavy meatsl” by a biologically and chemically significant classification of metal ions. Env. Poll. Ser. 1: 3–26.

    Google Scholar 

  • Nieboer, E., D. Padovan, and P. Lavoie. 1984. Anion accumulation by lichens. II. Competition and toxicity studies involving arsenate, phosphate, sulfate, and sulphite. New Phytol. 96: 83–94.

    Google Scholar 

  • Nriagu, J. O. and J. M. Pacyna. 1988. Quantitative assessment of worldwide contamination of air, water, and soils by trace metals. Nature 333: 134–139.

    Article  PubMed  CAS  Google Scholar 

  • Otte, M. L. 1991. Heavy metals and arsenic in vegetation of salt marshes and foodplains. Ph.D. thesis, Vrije Universiteit Amsterdam, The Netherlands.

    Google Scholar 

  • Ozaki, T., S. Enomoto, Y. Minai, S. Ambe, and Y. Makide. 2000. A survey of trace elements in pteridophytes. Biol. Trace Elem. Res. 74: 259–273.

    Google Scholar 

  • Page, C. N. 1988. Ferns: Their habitats in British and Irish landscape. New Naturalist series. London: Collins.

    Google Scholar 

  • Paliouris, G. and T. C. Hutchinson. 1991. Arsenic, cobalt, and nickel tolerances in two populations of Silene vulgaris (Moench) Garcke from Ontario, Canada. New Phytol. 117: 449–459.

    Google Scholar 

  • Peryea, F. J. 1998. Phosphate starter fertilizer temporarily enhances soil arsenic uptake by apple trees grown under field conditions. Hort. Sci. 33: 826–829.

    Google Scholar 

  • Pickering, I. J., R. C. Prince, M. J. George, R. D. Smith, G. N. George and D. E. Salt. 2000. Reduction and coordination of arsenic in Indian mustard. Plant Physiol. 122: 1171–1177.

    Article  PubMed  CAS  Google Scholar 

  • Pollard, A. J. 1980. Diversity of metal tolerance in Plantago lanceolata L. from the southeastern United States. New Phytol. 86: 109–117.

    Article  CAS  Google Scholar 

  • Pollard, A J. 2000. Metal hyperaccumulation: a model system for coevolutionary studies. New Phytol. 146: 179–181.

    Article  Google Scholar 

  • Porter, E. K. and P. J. Peterson. 1975. Arsenic accumulation by plants on mine waste (United Kingdom). Sci. Total Env. 4: 365–371.

    Google Scholar 

  • Porter, E. K. and P. J. Peterson. 1977. Arsenic tolerance in grasses growing on mine waste. Env. Poll. 14: 255–265.

    Google Scholar 

  • Prat, S. 1934. Die Erblichkeit der Resistenz gegen Kupfer. Berichte der Deutchen Botanischen Gesellschaft 102: 65–67.

    Google Scholar 

  • Raghavan, V. 1977. Cell morphogenesis and macromolecule synthesis during phytochrome-controlled germination of spores of the fern, Pteris vittata L. J. Exp. Bot. 28: 439–456.

    Google Scholar 

  • Raven, P. H., R. F. Evert, and S. E. Eichhorn. 1992. Seedless vascular plants. Pp. 323–324. In: Anderson, S. and E. Matalski (eds.) Biology of Plants. Worth Publishers, New York.

    Google Scholar 

  • Rocovich, S. E. and D. A. West. 1975. Arsenic tolerance in a population of the grass Andropogon scoparius Michx. Science 188: 263–264.

    Article  PubMed  CAS  Google Scholar 

  • Rosen, B.P. 1999. Families of arsenic transporters. Trends in Microbiology 7: 207–212.

    Article  PubMed  CAS  Google Scholar 

  • Ross, S. M. and K. J. Kaye. 1994. The meaning of metal toxicity in soil-plant systems. Pp. 153–188. In:

    Google Scholar 

  • Ross S. M. (ed.) Toxic Metals in Soil-Plant Systems. John Wiley and Sons, New York.

    Google Scholar 

  • Rost, T. L., M. G. Barbour, C. R. Stocking, and T. M. Murphy. 1998. Plant Biology. Wadsworth Publishing, Belmont, CA.

    Google Scholar 

  • Salt, D. E., M. Blaylock, N. P. B. A. Kumar, V. Duschenkov, B. D. Ensley, I. Chet, and I. Raskin. 1995. Phytoremediation: A Novel Strategy for the Removal of Toxic Metals from the Environment Using Plants. Biotechnology 13: 468–474.

    Google Scholar 

  • Salt, D. E., R. D. Smith, and I. Raskin. 1998. Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 643–668.

    Google Scholar 

  • Salt, D. E. and U. Krämer. 1999. Mechanisms of metal hyperaccumulation in plants. Pp. 231–246. In: Ensley, B. D. and I. Raskin (eds.) Phytoremediation of Toxic Metals: Using Plants to Clean-Up the Environment. John Wiley & Sons, Inc., New York, USA

    Google Scholar 

  • Sadiq, M. 1986. Solubility relationships of arsenic in calcareous soils and its uptake by corn. Plant Soil 91: 241–248.

    Article  CAS  Google Scholar 

  • Schmoger, M. E. V., M. Oven, and E. Grill. 2000. Detoxification of arsenic by phytochelatins in plants. Plant Phys. 122: 793–801.

    Article  CAS  Google Scholar 

  • Scott, N., K. M. Hatfield, N. E. Mckenzie, and D. E. Carter. 1993. Reactions of arsenic (III) and arsenic (V) species with glutathione. Chem. Res. Toxicol. 6: 102–106.

    Google Scholar 

  • Sela, M., J. Garty, and E. Telor. 1989. The accumulation and the effect of heavy metals on the water fern, Azolla filiculoides. New Phytol. 112: 7–12.

    Article  CAS  Google Scholar 

  • Sen, A. K., and N. G. Mondal. 1990. Removal and uptake of copper by salvinia natans from waste water. Water, Air, and Soil Pollu. 49: 1–16.

    Google Scholar 

  • Sheppard, S. C. 1992. Summary of phytotoxic levels of soil arsenic. Water, Air, Soil, Pollu. 64: 539–550.

    Google Scholar 

  • Silver, S. and T. K. Misra. 1988. Plasmid-mediated heavy metal resistances. Annu. Rev. Micro. 42: 717–743.

    Google Scholar 

  • Small, J K. 1931. Ferns of Florida. The Science Press, New York.

    Google Scholar 

  • Sneller, F. E. C., L. M. Van Heerwaarden, F. J. L. Kraaijeveld-Smit, W. M. Ten Bookum, P. L. M. Koevoets, H. Schat, and J. A. C. Verkleji. 1999. Toxicity of arsenate in Silene vulgaris accumulation and degradation of arsenate-induced phytochelatins. New Phytol. 144: 223–232.

    Article  CAS  Google Scholar 

  • Taiz, L. and E. Zeiger. 1998. Plant Physiology. 2nd edition. Sunderland, Mass., Sinauer Assocaites, Inc. THOMPSON, D. J. 1993. A chemical hypothesis for arsenic methylation in mammals. Chemico-Biological Interactions 88: 89–114.

    Google Scholar 

  • Tossell, R. W., K. Binard, and M. T. Rafferty. 2000. Uptake of arsenic by Tamarisk and Eucalyptus under saline conditions. Pp. 485–492. In: Wickramanayake, G. B., A. R. Gavaskar, B. C. Alleman, and V. C. Magar (eds.) Bioremediation and Phytoremediation of Chlorinated and Recalcitrant Compounds. Battelle Press, Columbus, Richmond.

    Google Scholar 

  • Tu, C., Ma, L. Q., and B. R. Bondada. 2002a. Effects of growth time on soil arsenic speciation and plant arsenic accumulation and distribution. J. Environ. Qual. (In Press).

    Google Scholar 

  • Tu, S, B. R. Bondada, and L Q Ma. 2002b. Kinetics of arsenate uptake by the arsenic hyperaccumulating brake fern (Pteris vittata L.) under the influence of phosphorus nutrition. ASA meeting, Indianaoplis, IN.

    Google Scholar 

  • Ullrich-Eberius, C., I. A. Sanz, and A. J. Novacky. 1989. Evaluation of arsenate-and vandateassociated changes of electrical membrane potential and phosphate transport in Lemma gibba G1. J. Exp. Bot. 40: 119–128.

    Google Scholar 

  • Vogeli-Lange, R. and G. J. Wagner. 1990. Subcellular localization of cadmium and cadmium binding peptides in tobacco leaves: implication of a transport function for cadmium binding peptides. Plant Physiol. 92: 1086–1093.

    Article  PubMed  CAS  Google Scholar 

  • Vogt, T. 1942. Geochemical and geobotanical ore prospecting. III. Some notes on the vegetation at the ore deposits at Roros. K. Norske Vidensk. Selsk. Skr. 15: 21–24.

    Google Scholar 

  • Wagner, Jr. W. H. and A. R. Smith. 1993. Pteridophytes and Gymnosperms. Pp. 132. In: Flora of North America Editorial Committee. Flora of North America, North Mexico V. 2. New York.

    Google Scholar 

  • Wells, J. M. and D. H. S. Richardson. 1985. Anion accumulation by the moss Hylocomium splendens: uptake and competition studies involving arsenate, selenate, selenite, phosphate, sulphate and sulphite. New Phytol. 101: 571–583.

    Article  CAS  Google Scholar 

  • Who. 2001. Arsenic in drinking water. http://www.who.int/int-fs/en/fact210.html. Fact Sheet No. 210. May 30, 2000.

  • Wild, H. 1968. Geobotanical anomalies in Rhodesia. I. The vegetation of copper-bearing soils. Kirkia 7: 1–71.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bondada, B.R., Ma, L.Q. (2003). Tolerance of Heavy Metals in Vascular Plants: Arsenic Hyperaccumulation by Chinese Brake Fern (Pteris Vittata L.). In: Chandra, S., Srivastava, M. (eds) Pteridology in the New Millennium. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2811-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2811-9_28

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6222-2

  • Online ISBN: 978-94-017-2811-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics